| 2008 | 
  |  | Inglis M. & Simpson A.  (in press)   				Conditional inference and advanced mathematical study Educational Studies in Mathematics | 
  |  | Lithner J. (in press) A research framework for creative and imitative reasoning Educational Studies in Mathematics | 
  |  | Larsen S. & Zandieh M. (in press)  				Proofs and refutations in the undergraduate mathematics classroom Educational Studies in Mathematics | 
  |  | Yang K-L & Lin F.-L. (2008) A model of reading comprehension of geometry proof Educational Studies in Mathematics 67/1, 59-76 | 
  |  | Oehrtman M. & Lawson A. E.(in press) Connecting Science and Mathematics: The Nature of Proof and Disproof in Science and Mathematics International Journal of Science and Mathematics   Education | 
  |  | Hatzikiriakou K. & Metallidou P. (in press) Teaching Deductive Reasoning to Pre-service Teachers: Promises and Constraints International Journal of Science and Mathematics   Education | 
  | 2007 | 
  |  
  
 | Stylianides, G. J. (2007). Investigating the   guidance offered to teachers in curriculum materials: The case of proof in   mathematics. International Journal of Science and Mathematics   Education 6, 191-215. | 
  | Because the site was down for a few weeks in the last months, the references of the previous edition of the newsletter are reproduced below. | 
  |  | Ellis Amy B.(2007) Connections Between Generalizing and Justifying: Students' Reasoning with Linear Relationships Journal for research in mathematics education V. 38, Issue 3, 194 - 229 | 
  |  | Inglis M., Mejia-Ramos, J. P., Simpson, A.  (2007) Modelling mathematical argumentation: the importance of qualification Educational Studies in Mathematics66/1, 3-21 | 
  |  | Pedemonte B.  (2007) How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics 66/1, 23-41 | 
  |  | Otte, M.  (2007) Mathematical history, philosophy and education Educational Studies in Mathematics 66/2, 243-255 | 
  |  | Barbin, E.  (2007) On the arguments of simplicity in Elements and schoolbooks of geometry Educational Studies in Mathematics 66/2, 225-242 | 
  |  | Lannin, J., Barker, D., Townsend B.  (2007) How students view the general nature of their errors Educational Studies in Mathematics 66/1, 43-59 | 
  | ICMI Study 19Proof and proving in mathematics education
 May 10-15, 2009Taipei, Taiwan
 | 
  |  The Discussion Document, in PDF format (including a call for contributions), is   in the "conference program" section of this website (still under   construction but functional). 
 Important dates:
 By 30 June 2008:  Potential authors upload their papers to the conference website.
 By 15 November 2008: Potential authors receive the result of the  refereeing process. Invitations to participate in the conference are  sent to authors whose papers are accepted.
 
 International Program Committee   (ICMI 19)
 
 Gila Hanna, University of Toronto (Canada),   co-chair
 Michael de Villiers, University of KwaZulu-Natal (South Africa),   co-chair
 
 Ferdinando Arzarello, Università di Torino (Italy)
 Tommy   Dreyfus, Tel Aviv University (Israel)
 Viviane Durand-Guerrier, IUFM de Lyon   (France)
 Hans Niels Jahnke, Universität Duisburg-Essen (Germany)
 Fou-Lai   Lin, National Taiwan Normal University (Taiwan)
 Annie Selden, New Mexico   State University (USA)
 David Tall, University of Warwick (UK)
 Oleksiy   Yevdokimov, University of Southern Queensland (Australia)
 Bernard R. Hodgson,   Université Laval (Canada), ex officio
 
 ICMI Executive   Advisors:
 Hyman Bass, University of Michigan (USA)
 Mariolina   Bartolini-Bussi, Università degli studi di Modena e Reggio Emilia (Italy)
 
 | 
 
  | Selected Bibliography      of Philosophical Materials Pertaining to Mathematics and Proof Web-site | Logica matematica, costruzione dei concetti e processi socio-cognitivi
 Convegno a Salerno
 30 Giugno-3 Luglio 2008, Salerno
 | 
  |  This is an important web-site constructed by Gila Hanna, containing an updated bibliography on philosophical aspects of proof. |  Il convegno vuole essere occasione di discussione sulle relazioni che intercorrono tra logica matematica e calcolo simbolico da un lato ed i processi cognitivi legati alla formalizzazione ed alle strategie inferenziali dall'altro.
 Per saperne di più...  
 | 
  | Recherches sur l’articulation entre la logique et le raisonnement  mathématique dans une perspective didactique. Un cas exemplaire de  l’interaction entre analyses épistémologique et didactique. Apports de  la théorie élémentaire des modèles pour une analyse didactique du  raisonnement mathématique V. Durand-Guerrier | 
    
 ICME 11
 Topic study Group 18: Reasoning, proof and proving in mathematics education
 Monterrey, Mexico,
 July 6 - 13, 2008.
 | 
  |  Cette note de synthèse rédigée en vue de soutenir une habilitation à  diriger des recherches (HDR) a comme but de proposer une relecture de  l'ensemble de travaux de recherche que Viviane conduit depuis une quinzaine  d'année sur l'articulation entre la logique et le raisonnement  mathématique à la lumière de la théorie élémentaire des modèles de  Tarski, qui joue ici le rôle de référence épistémologique pour les  analyses didactiques. |  The ICME 11 Topic Study Group on « Reasoning,  proof and proving in mathematics education » will serve a dual role:  Present an overview of the current state of art in the topic  “Reasoning, proof and proving in mathematics education (RPP),” and  expositions of outstanding recent contributions to it, as seen from an  international perspective  Sharing of ongoing work and perspectives.
 To know more ... 
 | 
  | 
    Deux contributions aux séminaire de l'équipe DIDIREM par Paolo Boero
 Paris19 décembre 2007
 | 
  | La fonction "constructive" du langage verbal dans les situationsd'interaction verbale en classeDans une perspective Vygotskienne, on étudiera comment le langage   verbal (à travers des jeux de production et d'interprétation dans des situations d'interaction dirigée par l'enseignant) peut fonctionner   dans l'avancement de la construction commune des connaissances, au niveau   de l'école primaire.
 L'élaboration de Habermas sur la rationalité comme outil pour   encadrer la complexité des activités de conjecture et de preuveLes activités de production de conjectures et de construction de démonstrations sont d’une grande complexité et comportent une large variété de processus mentaux orientés vers des produits soumis à des contraintes culturelles précises (de forme, de rigueur, d’encadrement théorique). L'articulation du "comportement rationnel" selon Habermas   (rationalité épistémique, rationalité téléologique, rationalité communicative), convenablement adaptée, semble appropriée pour encadrer cette complexité. L'élaboration vygotskienne à propos de concepts communs -concepts scientifiques offre une perspective "developpementale" pour   cet encadrement.
 |