Janvier/Février 1999


Aigner M., Ziegler G.M. (1998) Proofs from The Book. Berlin : Springer Verlag

Arsac G. (1998) L'axiomatique de Hilbert et l'enseignement de la géométrie au collège et au lycée. Lyon : Aléas & IREM de Lyon.

Beck I., Vaillant M. (1998) Comprendre un texte argumentatif. Annales de Didactique et de Sciences Cognitives. 6, 89-115.

Botana F., Valcarce J. (1998) Proofs in some dynamic geometry systems. In : International Conference on the teaching of mathematics (pp. 53-55). John Willey & Sons.

Cnop I. (1998) A uniform Computer-supported approach to analysis: Process, concepts and proofs. In : International Conference on the teaching of mathematics (pp. 65-67). John Willey & Sons.

Dales G., Oliveri G. (eds.) (1998) Truth in mathematics. Oxford University Press.

de Villiers M. (1998) An alternative approach to proof in dynamic geometry. In : Lehrer R., Chazan D. (eds.) New directions in teaching and learning geometry (pp. 369-393). Lawrence Erlbaum.

El Glass B. (1998) L'apprentissage de la demonstration avec le logiciel DEFI. In : Actes du Séminaire de Didactique de mathématiques et de l'EIAO (pp. 3-33). Rennes : IRMAR.

Heuberger P. (1998) A mathematical software environment for teaching algebra, logic and term rewriting. In: International Conference on the teaching of mathematics (pp. 143-145). John Willey & Sons.

Houdebine J. (ed.) (1998) La démonstration écrire des mathématiques au collège et au lycée. Paris : Editions Hachette.

Movshovitz-Hadar N., Malek A. (1998) Transparent pseudo-proofs: a bridge to formal proofs. In : International Conference on the teaching of mathematics (pp. 221-223). John Willey & Sons.

Pluvinage F. (1998) La nature des objets mathematiques dans le raisonnement. Annales de Didactique et de Sciences Cognitives. 6, 125-138.

Rotman J. (1998) Journey into mathematics an introduction to proofs. Prentice Hall, NJ

Sáenz-Ludlow (1998) Procesos inferenciales en el pensamiento matematicó de Miguel. Revista EMA. 4(1) 3-15.

Shimizu Y. (1998) The influence of "supposed others" in the social process of making a mathematical definition. Tsukuba Journal of Educational Studies in Mathematics Education 17, 195-204.

Vernikos S., Dinou A., Chionidou M. (1998) The lost honour of the proof. In : International Conference on the teaching of mathematics (pp. 305-307). John Willey & Sons.


Les références qui suivent sont publiées dans:
 Actes du colloque : Produire et lire des textes de démonstration. 23-24 janvier 1998. Laboratoire de  Didactique des Mathématiques. Université de Rennes 1.

Barbin E. (1998) La démonstration : pulsation entre le discursif et le visuel. (pp. 39-68)

Beck I. (1998) Une approche linguistique de textes de raisonnement. (pp.1-22)

Duval R. (1998) Ecriture et compréhension : pourquoi faire écrire des textes de démonstration par les élèves. (pp. 79-98)

Houdebine J. (1998) La diversité des textes de démonstration. (pp. 23-38)

Py D. (1998) La démonstration dans les EIAO en géométrie. (pp. 69-78)


On proof,
the logic of practice of geometry teaching
and the two-column proof format


Patricio G. Herbst


From the perspective of the reader, the finished product of a two-column proof looks like an argument that validates the proposition stated. A closer look shows that its production may not have any more meaning than the protocols used by lawyers or notaries, as indeed the division of labor in the practice that produces the proof does not look like the division of labor among a group of mathematicians manufacturing a mathematical argument. Two-column proofs can be called formal, but their formalism has little to do with the productive kind of rigor and formalism that helps mathematicians advance human understanding of mathematics. Those formats play an important role in the logic of practice of geometry teaching, but they do not necessarily involve students in experiences with mathematical rigor and formalism.


To read more


Théorie des situations didactiques

Guy Brousseau

Journey into mathematics an introduction to proofs

Joseph Rotman

 "Le passage de la  pensée naturelle à  l'usage d'une pensée  logique comme celle  qui régit les raisonne- ments mathématiques  s'accompagne de la
 construction, du rejet,  de la reprise de  différents moyens de  preuve : rhétoriques,  pragmatiques, sémantiques ou syntaxiques.
   L'examen d'une preuve est une attitude réflexive. Il faut que la preuve soit formulée et présente tout au long de l'examen donc le plus souvent écrite. Qu'elle puisse être confrontée à d'autres preuves écrites elles aussi, à la situation à laquelle elle renvoie.
   En général, la preuve ne pourra être formulée qu'après avoir été utilisée et éprouvée en tant que règle implicite soit dans l'action soit dans les discussions."

Commande aux
Editions La Pensée Sauvage

One of the main purposes of this book is to help the (novice) reader at the undergraduate level how to read and write proofs. The author points out at the beginning that a major function of proof is that of explanation; ie. explaining why a result is true. On the other hand, he also uses some very good examples early on to illustrate the limitations of inductive reasoning. For example, he gives a spectacular example involving a special case of Pell's equation for which the first n for which it is false has 1115 digits! The author subsequently introduces the verification function of proof by introducing mathematical induction as one method for checking the validity of a mathematical statement for all n.
  The book discusses binomial coefficients, polygonal areas, the irrationality of square root 2, the Pythagorean theorem, Pythagorean triples, the Diophantine method of finding Pythagorean triples, the area and circumference formulas of disks by Eudoxus and Archimedes, the quadratic formula, complex numbers, the cubic formulas of Cardona and Viete' respectively, the quartic formula, and lastly proofs of the irrationality of e and pi, which is essential reading for every high school mathematics teacher. The author presents all these topics by interweaving historical information which makes it very entertaining; in fact, this is a strategy used effectively throughout the book. In so doing, geometry, algebra, number theory, and analysis are all intertwined in this entertaining journey.
  A major feature of the book which makes it particularly relevant to novices, is the way in which the historical background has been interwoven into the discussion. It shows how techniques and understanding developed over time, with several people building on the work of their predecessors.
  Several exercises are given in the book where the reader can apply and extend the ideas discussed in a chapter. This clearly forms an integral part of the book, and the author correctly points out that merely reading about mathematics is no substitute for doing mathematics. In conclusion, this book is a valuable contribution to the teaching of proof at the undergraduate level, and strongly recommended.

M. de Villiers

Published by Prentice Hall

Proofs from The Book

M. Aigner, G.M. Ziegler

 "We have no definition  or characterization  of  what constitutes a proof  from The  Book: all we  offer here is the examples  that we have selected,  hoping that our  readers  will share our  enthousiasm about  brilliant ideas, clever insights and wonderful  observations. We also hope that our readers  will enjoy this despite the imperfections of  our exposition."
  "To a large extent this book reflects the views of Paul Erdös as to what should be considered a proof from The Book"

The editors

Order forms to Springer
available on the web...

AERA Symposium
Montreal, 19 April 1998

Fostering argumentation in the mathematics classroom:
The role of the teacher

Organiser: Patricio Herbst
Chair: Jeremy Kilpatrick

The NCTM Curriculum Standards (National Council of Teachers of Mathematics, 1989) call for decreased attention to two-column proofs and increased attention to alternative expressions of mathematical argument, such as "deductive arguments expressed orally and in sentence or paragraph form". Teachers are to promote or increase students' opportunities "to make and provide arguments for conjectures", "formulate counterexamples; follow logical arguments; judge the validity of arguments; [and] construct simple valid arguments". The Standards suggest that mathematical argumentation be contrasted with other forms of argumentation (such as political or commercial advertisements), in some of which logical errors can be detected.
   Similarly, the Professional Standards for Teaching Mathematics (NCTM, 1991) indicate the teacher's responsibility to choose tasks that "require students to speculate,… to face decisions about whether or not their approaches are valid". Teachers are encouraged to play a role of orchestrators of classroom discourse in the direction of mathematical reasoning, asking students to explain and justify their ideas. The Professional Standards expect that as a result of those efforts from the teacher, students will become competent in the use of mathematical argument to support the validity of their conjectures.
   A group of five mathematics educators will discuss the role of the teacher in fostering mathematical argumentation with respect to the epistemological opposition between argumentation and proof and the educational opposition between mathematical reasoning and two-column proofs. (The discussion will focus on the American curriculum but will be enhanced by the experiences of the contributors, as they come from four different countries.) The aim is to provide a multidimensional conceptualization that identifies the conditions and constraints of the teacher's work and to illustrate the dilemmas that the teacher may encounter.
   The symposium will have five sections. Each contributor will approach the opposition between argumentation and proof from a different angle. The symposium wil be concluded by a panel discussion in which will be raised the key questions, it will allow the five participants to react to the other presentations, and open the floor for comments and questions from the audience. The following sections describe the parts into which the symposium will be divided...

To read more

La démonstration
écrire des mathématiques
au collège et au lycée

sous la direction de
Jean Houdebine
Truth in mathematics

edited by
Garth Dales and Gianluigi Oliveri

 Le parti pris de cet ouvrage, qui s'adresse  aux enseignants, rédigé sous la direction de  Jean Houdebine, est que la démonstration  est d'abord un texte. Aussi ne peut-on  comprendre, écrivent les auteurs, et a  fortiori apprendre ajouterons-nous, une  démonstration sans saisir la singularité de  sa structure textuelle. Pourtant, notent-ils,  la pratique de l'enseignement semble  montrer qu'il n'est pas possible de réaliser  un tel enseignement de façon explicite.  Quelle issue ? la pratique de la lecture, suggèrent les auteurs. Nous reviendrons sur cet ouvrage dans une prochaîne Lettre de la Preuve. (NB)

Publié par les éditions Hachette

This book is addressed to philosophers and to mathematicians. Some of the papers would be of interest to mathematics educators: Manin's "Truth rigor, and common sense", Effros' "Mathematics as language", Maddy's "How to be a naturalist about mathematics", and the introduction by Dales and Oliveri "Truth and the foundation of mathematics" which gives a thorough overview of the various conceptions of what it means to say that a mathematical statement is true, along with a good summary of the papers in the volume.

Published by Oxford University Press

To order, contact OUP

L'axiomatique de Hilbert
et l'enseignement de la géométrie
au collège et au lycée.

Gilbert Arsac

Web Archives

The philosophy of mathematics

a site developed by
R. B. Jones

 A site worth visiting this time, if you missed the  invitation of the last newsletter. A lot of links, references and information. A site which will provide you with statements that you may agree with or not, but which will surely let you think.

Gleaned from

Cet ouvrage s'adresse aux enseignants sur un thème que la recherche en didactique a bien peu examiné : l'axiomatisation. Il ne s'agit pas, annonce Gilbert Arsac, de "proposer aux enseignants une nouvelle manière d'enseigner la géométrie, mais de leur donner l'occasion d'un regard neuf sur le contenu de leur enseignement au moment où, après l'abandon d'un exposé de la géométrie fondé sur l'introduction algébrique de la géométrie affine, on revient à un exposé basé sur les notions 'naturelles' de droite, point, angle..." (NB)

Publié par les éditions Aléas
et l'IREM de Lyon

Pupils need for conviction and explanation within the context of dynamic geometry

Vimolan Mudaly

TSG 12: Proof and Proving in Mathematics Education

be ready... pre-register !

This Master Thesis (University of Durban-Westville, South Africa) aims at evaluating the feasibility of introducing "proof" as a means of explanation rather than only verification, within the context of dynamic geometry. Pupils, who had not been exposed to proof, were interviewed and their responses were analyzed.

The research attempted to determine whether pupils were convinced about explored geometric statements and their level of conviction. It also attempted to establish whether pupils exhibited an independent desire for why the result, they obtained, is true and if they did, could they construct an explanation, albeit a guided one, on their own.

Web Archives

What's in a Proof?

Alex Bogomolny

Contact the author...

 The reader will discover a rather quick answer to a complex  question, but many links to follow and pages to explore.

30 December 1998, Vol.3, No.52A
  Pedagogy of Big Theorems

a CALC-FORUM discussion

 This special issue of the Math Forum's weekly newsletter highlights interesting conversations taking place  during December of 1998 on Internet math discussion groups. The readers of the Proof Newsletter may be interested in following the discussion of CALC-REFORM -- a mailing list hosted by e-MATH of the American Mathematical Society (AMS) -- focussing on the "Pedagogy of "Big Theorems" (5 Dec. 1998). Hereafter are reproduced some quotations :

"...proving 'big theorems' is not pedagogically effective. Proofs are simply too long and too overwhelming for students. It is hard to learn 5 or more steps at once, the brain gets overloaded...." - Kazimierz Wiesak

"Proofs are not intended to build intuitive understanding. But saying 'accept this!' is probably worse pedagogically, depending, of course, on goals...." - Walter Spunde

"My piano teacher always amazed me by playing complicated Bach pieces at sight. She explained the method: she recognized groups of notes (chords and chord sequences for example), and hardly had to think when playing them; her fingers knew what to do, and she had to think only for the broad sweep of the piece. Whereas when I played at sight, each note involved finger juggling and thinking. No wonder I found it difficult (and still do)! Polya wrote about the value of teaching mathematical ideas using repetition but with variation, and pointed to the composers for examples. Perhaps sight-reading is another example where we could learn from the composers." - Sanjoy Mahajan

La bibliographie
Outil de recherche
Cours en ligne
Questions et réponses

A propos du site

The bibliography
Search tool
Online course
Questions and answers

About the site

La bibliografia
Herramienta de busqueda
Curso electronico
Preguntas y repuestas

Con respecto a este servidor

Adresser suggestions et remarques à...
Send remarks and suggestions to...
Enviar comentarios y sugerencias a ...

 The newsletter editor


2559 [98 11/12] [98 09/10] [98 07/08] [98 05/06] [98 03/04] [98 01/02] 1629 [97 11/12] [97 09/10] [97 07/08]
97 05/06] [97 03/04] [97 01/02]

Laboratoire Leibniz
How to publish Cabri figures
on the Web?

Cabri Java Project

Projet Cabri-géomètre

Editeur : Nicolas Balacheff
English Editor :
Virginia Warfield, Editor en Castellano : Patricio Herbst

Advisory Board : Paolo Boero, Daniel Chazan, Raymond Duval, Gila Hanna, Guershon Harel,
Celia Hoyles, Maria-Alessandra Mariotti, Michael Otte, Michael de Villiers