Hiver 2019

Publications 2019

Lepak, J., and Going, T. (2019) Designing Scaffolds for Students’ Written Arguments Mathematics Teaching in the Middle School Vol. 24, No. 5 (March 2019), pp. 300-303.

Hernández-Gómez, J.C., Locia-Espinoza, E., Morales-Carballo, A., Sigarreta-Almira J. (2019) El Contraejemplo en la Elaboración de la Definición de Función Convexa por Estudiantes Universitarios. Información tecnológica, 30/1 La Serena.

Brunner, E., and Reusser K. (online first) Type of mathematical proof: personal preference or adaptive teaching behavior? ZDM

Reid, D.A., Vargas, EAV (online first) Evidence and argument in a proof based teaching theory. ZDM

Andersson, A. Wagner D. (online first) Identities available in intertwined discourses: mathematics student interaction. ZDM

Kempen, L. Biehler, R. (online first) Fostering first-year pre-service teachers’ proof competencies. ZDM

Alfaro-Carvajal, C., Flores-Martínez, P., Valverde-Soto, G. (2019) La demostración matemática: significado, tipos, funciones atribuidas y relevancia en el conocimiento profesional de los profesores de matemáticas. UNICIENCIA, 33/ 2, pp. 55-75.

Publications 2018

Bratche A. E. (2019) Proof and Discourse in Mathematics: Teaching for Competency Learning to teach, 7/1.

Morales-Carballo, A., Locia-Espinoza, E., Ramírez-Barragán, M., Sigarreta Almira, J. M., Mederos, O. B. (2018) The Theoretical didactic approach to the counterexample in mathematics International Journal of Research in Education Methodology, 9, pp. 1510-1517.

TSG 16. Reasoning, argumentation and proof in mathematics education - ICME-14

July 12-19, 2020 Shanghai, China
Chair: Viviane Durand-Guerrier (Montpellier University, France)
Co-Chair: Samuele Antonini (University of Pavia, Italy)

There is international recognition of the importance of reasoning and proof in students’ learning of mathematics at all levels of education (elementary, secondary, university) and in all tracks (general, vocational). Indeed, reasoning, argumentation and proof are at the very heart of mathematical activity, playing a crucial role in learning processes. There is also international research-based evidences showing that many students face difficulties with reasoning about mathematical ideas and constructing or understanding mathematical arguments. Particularly, when these arguments meet the standard of proof, and that teachers often lack of adequate resources for helping their students to develop skills in reasoning, argumentation and proof. Although the existing body of research offers important insights into this area, there are still many open questions for which theoretical and empirically based responses are needed.

We invite submissions of theoretical or empirical research reports on any topic related to reasoning, argumentation and proof in mathematics education.

To know more:

As demonstrações matemáticas presentificadas nos livros didáticos do ensino médio : um foco nos capítulos de geometria

Mathematical proofs presented in Mathematics high school textbooks: a focus on the geometry chapters

Lucas Carato Mazzi PhD These – Universidade Estadual de Campinas

As políticas públicas acerca dos livros didáticos no Brasil datam do final da década de 1920 e têm sido modificadas ao longo dos anos até chegar em seu formato atual, o Programa Nacional do Livro Didático (PNLD). Esta foi uma proposta criada em 1984 pelo Governo Federal e tem como objetivo principal a avaliação e a distribuição gratuita de livros didáticos de todos os segmentos e níveis escolares para os alunos das escolas públicas brasileiras. […]
Esta pesquisa, em particular, tem por objetivo principal analisar de que modo as demonstrações e as provas matemáticas estão presentificadas nos capítulos de Geometria dos livros didáticos de Matemática do Ensino Médio aprovados pelo PNLD – 2018. Para alcançar esse objetivo, realizou-se uma pesquisa qualitativa, de modo a investigar os capítulos de interesse, em busca de possíveis momentos voltados às demonstrações e às provas. Como referencial teórico, foram utilizadas as ideias de raciocínio apresentadas por Reid e Knipping. Os autores discutem a presença de quatro diferentes tipos de raciocínio no ensino da Matemática: dedutivo, indutivo, abdutivo e por analogia.

To know more:

Habermas’ elaboration on rationality and mathematics education

Boero P., Morselli F., Guala E, Robotti E
Genoa - April, 9-10-11, 2019 - International workshop

The aim of the workshop will be to compare, discuss and (hopefully) collaboratively develop different ways of adapting Habermas’ elaboration on rationality to specific needs in the field of mathematics education:

  • to support the analysis of the content to be taught, particularly in teacher education;
  • to provide components of frameworks for teaching projects;
  • to analyze classroom implementation of such projects (on the side of the teacher, and on the side of students);
  • to analyze the conditions under which argumentation (a crucial component of rational discursive practices) may be developed in the school context;
  • to look at mathematics as a culturally situated rational discursive practice, in comparison with other practices.

Editorial Board

Editors-in-chief – Bettina Pedemonte, Maria-Alessandra Mariotti
Associate Editors – Orly Buchbinder, Kirsti Hemmi, Mara Martinez
Redactor – Bettina Pedemonte
Scientific Board – Nicolas Balacheff, Paolo Boero, Daniel Chazan, Raymond Duval, Gila Hanna, Guershon Harel, Patricio Herbst, Celia Hoyles, Erica Melis, Michael Otte, Philippe Richard, Yasuhiro Sekiguchi, Michael de Villiers, Virginia Warfield