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This paper reports on ideas developed during an analysis of data from a project
involving young children (aged 5-7 years) in a whole-class situation using dynamic
geometry software. The focus is a classroom episode in which the children try to
decide whether two lines that they know continue (but cannot see all of the
continuation) will intersect, or not. The analysis illustrates how the children can
move from an empirical, visual description of spatial relations to a more theoretical,
abstract one.

BACKGROUND

Research shows that a majority of students in North America have an inadequate
understanding of geometric concepts and poorly developed skills in geometric
reasoning, problem solving and proof (e.g., Battista, 2009; Clements and Battista
1992). Clements and Sarama (2008) have done pioneering work in describing some
learning trajectories for various strands of geometry, focusing especially on those
vectored towards curricular aims of middle school (such as identifying and
composing shapes, transformations, etc.). What remains a central question for
research in this area is how best to develop children’s explanations in a way that
appropriately supports their growing understanding of the nature of proof and
proving in mathematics (Stylianou, Knuth and Blanton, 2009).

This paper reports on portions of a project involving young children (aged 5-7 years
old) in a whole-class situation using dynamic geometry software (specifically
Sketchpad). The focus for this paper is a classroom episode in which the children try
to decide whether two lines that they know continue (but cannot see all of the
continuation) will intersect, or not. The episode relates to two important, and
growing, areas of research in primary school education: first, the nature of proof and
proving in the elementary grades, and second the development of understanding of
spatial relations in the early years of school.

Research on young children and proof

Research has pointed to the abrupt transition that children can encounter as they
move from primary school, where proof can be absent, to secondary school
mathematics, where it becomes more of a central concern (Balacheff, 1988; Ball et
al., 2002; Jones and Rodd, 2001; Sowder and Harel, 1998). In order to mitigate the
effects of this abrupt transition, researchers have argued that proof should begin in
the early grades (Bartolini-Bussi, 2009; Stylianides, 2007; Stylianou et al., 2009).
Further, there is growing evidence that young children can be capable of engaging in
deductive reasoning and proving (Galotti et al., 1997; Maher and Martino, 1996).
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What it means to engage in ‘proving’ requires some explanation, as Jahnke (2007)
notes, since a proof must depend on the concept of a theory. While some might argue
that empirical activity cannot lead to proving, Bartolini-Bussi (2009: 53) argues that
in the primary school, theories are “germ theories” that are “based on empirical
evidence, with expansive potential to capture more and more principles.” In other
words, an experimental approach does not necessarily work against the production of
general methods and the construction of mathematical proofs. Bartolini-Bussi argues
that proving in the early years depends on the teacher being able to lead children
from an experimental activity, through discussion, towards general methods and
justification, in order to nurture a theoretical attitude. In a somewhat different
approach, Stylianides draws parallels between a Grade 3 child’s argument and
Balacheff’s (1988) notion of a “thought experiment” which is the highest level of his
hierarchy of arguments (and which transcends the empirical arguments used in lower
levels). Here it is worth noting that Balacheff’s “thought experiment” describes not
only proof, but broader forms of mathematical argument:

The thought experiment invokes action by internalizing it and detaching itself from a
particular representation. It is still coloured by an anecdotal temporal development, but
the operations and foundational relations of the proof are indicated in some other way
than by the result of their use. (p. 219)

Research on young children and parallel lines

As Bryant (2009: 9), confirms, children’s spatial understanding begins early;
certainly before the start of formal schooling. By five, according to Bryant, children
can take in and remember the orientation of horizontal and vertical lines very well. In
contrast, at this age, children have considerable difficulty in remembering either the
direction or slope of obliquely-oriented lines. Yet, the research summarised by
Bryant indicates that if there are other obliquely oriented lines (in the background)
that are parallel to an oblique line, the children’s memory of the slope and direction
for the oblique line improves dramatically. Apparently, children can use the parallel
relation between the line that they have to remember and stable features in the
background framework to store and recognise information about the oblique line.
Bryant concludes that younger children probably perceive and make use of parallel
relations without necessarily being aware of doing so. A goal of the teaching
experiment reported in this paper was to make children’s implicit knowledge more
explicit by inviting them to reason about the relationships between lines. Further, in
keeping with the emphasis on proof and argument in the early years of school, the
project followed Bartolini-Bussi in designing classroom tasks that would start
experimentally but then provide an opportunity for nurturing a theoretical attitude.

THEORETICAL PERSPECTIVES

In previous research, we have found Sfard’s (2008) ‘commognition’ approach
suitable for analysing the geometric learning of students interacting with dynamic
geometry software (see Sinclair & Yurita, 2008). That research showed that the use
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of DGS can lead users to think about geometric objects and relations in very different
ways than they do using static, pencil-and-paper materials, thereby changing the
fixed, linear development proposed by the van Hiele’s. For Sfard, learning
corresponds to a change in discourse: learning geometry thus corresponds to
changing the way one communicates about geometric objects and relationships. Sfard
characterizes mathematical discourse in terms of four categories: word use (how are
words used that are specific to mathematics: a word such as ‘regular’ is used in a
particular way in geometry), visual mediators (pictures, symbols, graphs, etc.),
routines (repetitive patterns characteristic of a given discourse: for example, how you
tell whether two expressions are the same) and narratives (any sequence of utterances
framed as a description of objects, or relations between objects that is subject to
being endorsed (true) or rejected (false)). By analysing these different components of
discourse, and identifying changes that are relevant to mathematical thinking, we can
evaluate what students have learned through their interactions with the teacher, other
students, and the software.

RESEARCH CONTEXT AND METHODS

We worked with grade 1 and kindergarten children from a University Lab pre-K-6
school in an urban middle SES district. There were 22 children per class from diverse
ethnic backgrounds and with a wide range of academic abilities, with 25% being
special needs learners. We worked with the students for three days on a variety of
geometric concepts including identifying shapes, working with definitions, describing
and creating rotational and reflectional symmetries, and identifying parallel and
intersecting lines — a topic not covered in North American primary school curricula.
Each lesson lasted approximately 30 minutes and was conducted in a small group
(half class at a time) with the children seated on a carpet in front of a large screen.
Two researchers, and the classroom teacher, were present for each lesson. The first
author conducted the lessons. Each lesson was videotaped and transcribed. The
lesson presented in this paper focused on conceptualizing intersecting and parallel
lines. The students had already had two previous lessons involving Sketchpad. The
students had never received formal instruction related to extended lines, intersections,
or the notion of parallel lines. We first describe the lesson and then analyse the lesson
in terms of the evolution of the geometric discourse using Sfard’s four characteristic
features.

EXPLORING INTERSECTING LINES

The lesson began with the children being shown several examples of pairs of points
tracing out thickly-coloured linear paths, with some pairs intersecting and others not.
In talking about these pairs of lines, the children described the former as “touching.”
After students successfully identified pairs of lines that “touch” or not, the instructor
offered the more technical word “intersection” to describe the former, which the
children immediately connected to road crossings—and, interestingly, cars crashes.
The instructor opened a new sketch and used the line tool to construct two lines,
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colouring one red and the other blue. The lines were positioned so as to be non-
parallel, but so that the intersection was not visible (see Figure 1). When asked “Do
you think these two lines meet?” the students all said “No” in chorus. Then one girl
said “But they can if you tilt it all the way down.” The instructor began dragging the
top line toward the bottom one and as the intersection became visible, one student
said, “now they have an intersection” and another added “a very small one.” The
instructor dragged the top line up again and asked “And here do they make an
intersection?” The students chorused “no.” After a few seconds, one boy said “Oh
yes they do, they do.” Several students began talking at once, and one said, “Because
they go out of the screen.” So the instructor adjusted the screen (dragging the right
corner of the window to enlarge it) so that the intersection was made visible, and the
children talked excitedly when seeing the intersection.

Figure 1: A non-visible intersection

The instructor then dragged the lines even further apart, so that their intersection was
not visible, and asked the students to “use their imagination” to decide whether they
intersect. This time most children said “yes.” Then a few said that they wouldn’t,
then many others joined in. Other children hedged, “I think it might.”

Instructor: ~ Can we make some theories about why it might intersect?
Natasha: Because it’s tilting (referring to the red (top) line).

Robert: The lines, um, can’t meet at the edge of the screen because they are too far
apart and they can’t just like suddenly just have a straight line going down
and meet.”

But Jamie seemed to change his mind:

Jamie: Cause they are going like this (tracing with index finger two lines coming
together).

Instructor: ~ But do you think they would ever meet?

Robert: Yes, because they are both slanting and the red one is slanting toward the
blue one.

Natasha: It’s going to always connect somewhere because the red one is slanting so
it’s going to connect somewhere over here (pointing toward the outside
right of the screen).

Instructor:  Even if we can’t see it, it’s going to connect, it’s going to intersect
somewhere over here?
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Jamie: I think it’s never going to intersect
Instructor: ~ Why?
Jamie: Because 1 just do.

Instructor: ~ What do you think about the theory though that this (pointing to the red
line) is slanting more and more toward the blue?

Jamie: (Standing up) But the blue is also going like this (using hands and arms to
show that both lines are slanting).

Instructor:  Oh I see. Interesting, so the blue is slanting as well.

Jamie: As long as both, the red’s going down the blue’s going down beside it so
the line can’t just go like that (bringing his hands together, curving the
top one down to touch the bottom one) and then intersect.

Instruction: That’s interesting. Let’s look at a situation where we can definitely see an
intersection (dragging the two lines so that their intersection is visible on
the screen). So now they’re both slanting just like Robert said.

Natasha: But it’s always going to slant because right there (pointing to the left on
the screen) that’s how thick it was so it’s always going to slant.

Instructor:  It’s always going to slant.
Saskia: It’s going to intersect.

Robert: It’s going to intersect at one point but it might, it might intersect
somewhere far, far away.

Instructor: ~ We need to figure out how we’re going to know when the lines are going
to intersect even when we can’t see it. So Jamie, no Natasha said they’re
going to intersect between the red one is slanting toward the blue one.

Natasha: No because that right there (hand positioned so that index and thumb at a
certain distance away) isn’t the same thickness and it’s going to intersect
because it always gets smaller.

When asked what gets smaller, Natasha came to the screen and put her index finger
on the red line and her thumb on the blue and moved toward the intersection while
decreasing the gap between her index and thumb.

The instructor then announced they would look at another situation in which the
intersection is not visible, at which point Jamie asked “can we see if it is going to
intersect or not?” No one expressed any surprise when the window was enlarged in
order to make the intersection visible. Jamie then got up and traced his fingers along
the intersection. The instructor invited him to explain what he’d done.

Jamie: Because the red one is slanting enough (gets up to trace to lines off the
screen and create their intersection with his fingers).

Finally, the instructor dragged the red line so that the two lines were parallel to each
other and asked the students whether they would intersect. All students said “nooo.”
One student used Natasha’s gesture of measuring the thickness. Jamie used both arms

PME 34 - 2010 4- 189



Sinclair, Moss, Jones

and said, “because they are going away from each other.” And Charlotte said
“Because they are both going the same way. One of them, they’re not slanted, so,
they’re kind of slanted but they’re not going to meet since one of them is not really
slanted because they’re just going like (gesturing with one straight arm the direction
of a line) they’re both going (now bringing the other arm to move parallel with the
first) like that so they’re never going to meet (using her right hand to curve down
towards the left one). The instructor then offered the word “parallel” to describe two
lines that are never going to intersect. In terms of their word use, the children’s initial
discourse is about shapes immediately visible to their visual field. So, for example,
“line” is a linear segment drawn on the screen. This evolves into an unbounded
process that leaves a linear trace, as can be seen in the way the children begin to talk
about “they are going like this” and “the red one going down.” This change may
seem marginal at first, but it signifies a huge leap from the geometric discourse of
being captive of one’s visual field and speaking about static visible objects, to the
discourse of talking about possibilities (hypothetical things: “it’s going to connect
somewhere other here”) and abstract objects (an invisible point of intersection). The
role of the instructor is crucial in bringing about the change in discourse, not only in
terms of the manipulation of the lines—which go from having visible to invisible
intersections, and which move as entire objects all at once—but in terms of modelling
the new discourse. The questioning begins with “do the two lines meet” and then
turns into a more hypothetical formulation about “why it might intersect”—the
former concerning the static, visible lines and the latter going beyond the here and
now, implying that the “line” is not just what is contained in the children’s visual
field. This discursive shift is evident in Natasha’s statement “It’s going to always
connect [...] so it’s going to connect somewhere over there,” which involves a
hypothetical, dynamic way of talking. The instructor reinforces this way of talking
when she asks “Even if we can’t see it, it’s going to connect, intersect somewhere
over there?” and when she re-voices the dynamic description “the red is slanting
more and more toward the blue.” While the word intersection was initially reserved
for a visible place where two lines meet, toward the end of the episode, the children
use it to describe any place where two lines meet, be they visible or not. Indeed,
besides Jamie, who insists on actually seeing the intersection, even though he has
argued that the two lines must intersect, the other students express no such empirical
need, and their lack of response to the empirical evidence suggests they are neither
surprised nor relieved. In terms of routines (repetitive patterns found in the discourse
of the students as a class), we see a shift from the routine that depends on the visual
identification of the intersection, to one that involves working with the properties of
the lines. In one routine, the children assess whether one line is slanting toward
another and in the other, they determine whether the “thickness” of the lines varies.
Both routines are more sophisticated in terms of their geometric discourse in that they
rely on assertions about the relationships between the lines—in which the lines are
conceived as objects that can be transformed. The ensuing narratives are expressed in
the statements about intersecting lines, namely, that two lines intersect if one slants
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more than the other or if the thickness between the two gets smaller. Two new visual
mediators are also introduced, that of prolonging lines using one’s arms, and that of
using one’s fingers to measure the “thickness” between the lines, also indicated
through gesture. These gestures, which are introduced by Jamie and Natasha, are also
used by the other children in the class as they determine whether two given lines
intersect.

REFLECTIONS AND CONCLUSION

In this classroom episode, the children were being asked to come up with a method
whereby they could predict whether two lines might intersect. Although not explicitly
about parallel lines (though the word was eventually introduced to describe lines that
the children argued would not intersect), their task involved analysing the relation
between lines, and characterising the difference between lines that intersect and lines
that do not—a characterisation that forms the basis for the definition of parallelism.
Natasha and Jamie both offered arguments that qualify as thought experiments, in
Balacheff’s sense. In addition to setting up a context in which lines could be easily
and precisely moved, and extended as much as desired (unlike lines on a blackboard),
Sketchpad offered an opportunity for the teacher and the students to develop of
discourse of dynamism and potentiality. This way of talking enabled the thought
experiment that required the children to attend to the relationships between the lines
and to devise routines for using these properties to make inferences. We note the
pivotal use of gestures by the children in developing their routines; these gestures are
certainly a component of their commognition, and may deserve greater articulation—
beyond being classified as visual mediators—in Sfard’s characterisation of discourse.
Our analysis of the student episode demonstrates a substantive increase in
mathematical discourse along each of Sfard’s four characteristic features. We thus
provide further evidence of Bartolini-Bussi’s claim that young children can be
capable of transcending empirical arguments and engaging in aspects of deductive
argumentation.
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