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Mathematical theorems can be discovered and verified in different ways. In this
paper, I present a system of options, in which the plurality of ways of constructing
and establishing theorems throughout mathematical tasks is reduced to a few basic
elements. The framework is based on considerations of the philosophical logic of
Charles S. Peirce: abduction, deduction and induction. The options are exemplified
by problems, which challenge students to discover and verify mathematical theorems.
The pros and cons of the options are going to be discussed.

INTRODUCTION

Since the raise of constructivist approaches (e.g., Cobb et. al., 1992) mathematics
education research has focused on individual and social learning processes. In spite
of the importance of these processes the theoretical background of setting up
hypotheses has been considered in the recent years: the abduction. Abduction has
been used theoretically to present the necessary inference for the acquisition of
knowledge (e.g., Voigt, 1984; Hoffmann, 1999). Also there are first approaches to
reconstruct abductions from students’ comments (e.g., Knipping, 2003; Pedemonte,
2007). Meyer (2007) established an alternative pattern of abduction based on the later
theory of Peirce and refined by reconstructing classroom communication.

In this paper I will describe how the theory of Peirce can be helpful in order to
analyse problems in mathematical school books which challenge students to discover
and verify mathematical theorems. I am going to use the three inferences (abduction,
deduction and induction) to present a system of options, in which the plurality of
ways of constructing and establishing theorems is reduced to a few basic elements.

ABDUCTION, INDUCTION AND THEIR INTERPLAY

In this chapter, the inferences abduction and induction will be considered. Mainly I
will discuss the benefits of Peirce’s later concept of abduction for the understanding
of discovering new mathematical theorems.

Abduction

In the course of his philosophy, Peirce offered several different descriptions and
patterns of abduction. In his later writings he defines the “perfectly definitive logical
form” (Peirce, CP 5.189) of abduction as follows:

“The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.” (CP 5.189, 1903)
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Hempel und Oppenheim claimed that an explanation has to contain at least one
general rule (Peirce also used a general rule in his former writings, cf. CP 2.622).
Furthermore the observation has to be deductively inferable from the explanation (cf.
Stegmiiller 1976, p. 452). Thus we get a rule as mediator between the observed fact
(C) and the case (A). fact (result): R(x,) result: R(x,)

If we take a closer look at | ryle: Vi:C(x)=R(x) | rule: Vi:C(x)=R(x,)
the pattern of abduction, case: C(x,)

we are confronted with a : 0
problem: The case is en- Figure 1: Patterns of abduction

tirely contained in the

rule. If the rule is present, the case is present, too. The rule can not be a premise.
Thus we have to differentiate between abduction as a process of presenting our hy-
pothesis plausibly to public (right in figure 1) and abduction considered as a
cognitive process (left in figure 1). The latter starts with only one given premise: the
observed fact. This fact occurs as result of a general rule, if we are aware of this rule.

case: C(x,)

The cognitive process of finding an explanatory case is not logic in the sense of
mathematical formal logic. We rather see ourselves confronted only with a surprising
fact, before we carry out an abduction. We take the fact for granted, irrespective of
what we think about it. We feel constrained to accept it. It is the fact per se but for us
the fact is only present against the background of our own cognitive abilities. If we
are aware of the rule, the observed fact appears as a result of this rule. For this, we
put ideas of our former knowledge together and create something new, which is —
given by the observed fact — supported by reality (cf. CP 5.181).

The differentiation between abduction as a cognitive and a public process implies that
not only new cases but also new rules (and on this base new theories) can be inferred
abductively: If the observed fact could not be explained by using known rules, a new
rule (and thus a new case) has to be created. Eco (1983, pp. 206) calls this a “creative
abduction”. Thus, if a student has to discover a new rule, the task has to provide
results of the rule the student can not explain by known rules.

Induction

Induction is the inference from a case and a caser  Clx)
result to a rule. Figure 2 shows the general
pattern of an induction. In the common point of
view, induction is the necessary inference for rule: Vi:C(x;,) = R(x,)

result:  R(x,)

the creation of new rules. The underlying
concept of this point of view can be described as Figure 2: The pattern of induction
follows: ‘“What can be observed a couple of

times is always valid’. If we take a closer look at the pattern of induction, we are
confronted with a problem: The inference starts with the combination of a fact and a
result, but how do we get the idea of combining these premises? This can only be
done by abduction. Induction only takes place in order to confirm new ideas.
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The interplay of the inferences

In his later writings Peirce does not consider induction as being the inference to
create new rules: “in almost everything I printed before the beginning of this century
I more or less mixed up Hypothesis and Induction” (Peirce, CP 2.227; afterwards he
called hypothesis abduction). Induction now appears as the inference from ideas to
the confirmation of these ideas and abduction appears as the inference from observed
facts to new ideas. Thus his new conceptualisation differs from the common concept
of induction and he defines the inferences as different steps in the process of inquiry:

“... there are but three elementary kinds of reasoning. The first, which I call abduction ...
consists in examining a mass of facts and in allowing these facts to suggest a theory. In
this way we gain new ideas; but there is no force in the reasoning. The second kind of
reasoning is deduction, or necessary reasoning. It is applicable only to an ideal state of
things, or to a state of things in so far as it may conform to an ideal. It merely gives a new
aspect to the premisses. ... The third way of reasoning is induction, or experimental
research. Its procedure is this. Abduction having suggested a theory, we employ
deduction to deduce from that ideal theory a promiscuous variety of consequences to the
effect that if we perform certain acts, we shall find ourselves confronted with certain
experiences. We then proceed to try these experiments, and if the predictions of the
theory are verified, we have a proportionate confidence that the experiments that remain
to be tried will confirm the theory. I say that these three are the only elementary modes of
reasoning there are.” (CP 8.209)

There are at least two ways how this | 1. Abduction 2. Deduction 3. Induction

logical combination of abduction, | result!l case 2 case 2
deduction and induction can be used | rule 1 rule 1 result 2
case 1 result 2 rule 1

for the confirmation of a hypothesis:
The  Bootstrap-Model  (Carrier,
2000, p. 44) points out that the sub-

“—Abduction 2 Dreduction

Figure 3: The structure of verification by the

T o Bootstrap-Model (the same rule in every step)
creation or association of the general

rule, are specific. Other similar subjects (x;

..1...m) can be used to confirm or to refute
the rule or its coherence to the result (figure 3). Starting with some observed facts
(result 1) we abductively suggest a general rule. In the second step this rule is used to
deduce a prediction: If the rule is correct, a similar case (case 2) must have a
necessary consequence (result of the deduction). The predicted result is now going to
be tested. If the test confirms the

prediction, the rule gets con-

1. Abduction 2. Deduction

result 1 case 2 _
firmed by another example. rule 1 rles (& ulelorcasel)
A second approach of verifica- case | result 2

tion uses another rule, the hypo-
thetico-deductive approach (Car-
rier, 2000, p. 44): Deductively
another rule is used for inferring

Figure 4: The structure of hypothetico-deductive
verification (without the inductive step)
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a consequence of the conjectured rule or case. If the rule or the case of the abduction
is correct, the prediction (the result of the deduction) has to follow. If the test does
not confirm the prediction, the induction proves the hypothesis to be wrong.

OPTIONS OF TASK DESIGN

The described distinction between the inferences and their interplay for the empirical
confirmation of discovered rules has been used to analyse tasks in textbooks. In this
chapter I will describe the way and the outcomes of the analyses.

Methodology

The characteristic inference for discovering mathematical theorems is the abduction.
An abduction gets initiated by only one given premise: the surprising facts which
appear as a result of a rule, if we are aware of this rule. If a task in a textbook is
supposed to lead the students to a theorem, the task has to provide concrete results of
this theorem or (at least) the task has to enable the students to gather them. This
implies the following consequences for the reconstruction of tasks (The method of
reconstruction is described shortly in this paper. For a more detailed characterisation
please consider Meyer and Voigt, 2009): First, the scientist can look for mathematical
theorems the students should discover. These rules are often described in the
following course of the book or in the reference book for the teacher. Second, the
task has to be considered in different ways in order to establish a result of the
theorem. Sometimes these results are presented directly in the task. If there is no
mathematical theorem explicitly mentioned in the reference book or in the textbook,
a task could lead to different theorems. Thus, sometimes different ways of
discovering could be reconstructed. The reconstruction of analysing different ways of
empirical verifications of a mathematical theorem can be done analogically.
Examples will be presented in the following course of this paper. In the concerning
project, about 50 schoolbooks have been analysed. For the reconstruction of different
latent meanings of possible student solutions the method of “objective hermeneutics”
(Oevermann et al., 1979) has been used.

By analysing the tasks, different logical structures for discovering and verifying
theorems could be observed and resulted in a system of options. These options are
exemplified in consideration of the following theorem:

When multiplying two powers with the same basis a” and a° (a,b,c €[1), then the

b+c

product a” -a“equals a”*.

Figure 5: Multiplication law for powers with the same basis

Options for task-design I: Discovering mathematical theorems

Option 1: Discovery by a special result. In order to discover the multiplication law
a student could rewrite 100000 - 100 = 10000000 by using powers with the basis 10.
Therefore, he only has to use the definition of powers deductively. The new equation
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can be used in order to discover a general rule. The discovery of the multiplication
law can be made by the following abduction:

result; 100 =100 dby asing the laaw of allaclhang mros)
mbe:  Mullsplcatie i

Case The bases e the same amil 5+2

Figure 6: A creative abduction made by a special result.

Concerning the example, the result of the abduction might be so familiar for a student
that the law of attaching zeros could be enough for him to explain the result. We
speak of a “discovery by a special result”, if known rules can be used to explain the
result and the student is not in need of finding a new rule.

Option 2: Discovery by a typical result. The abduction by a typical result increases
the chance to discover a new theorem (instead of using known theorems). Regarding
the example: The student determines 3°-3* and 3’ by using a calculator. Afterwards
he should — in consideration of the equality — discover a general rule. The necessary
abduction is nearly analogous to the former one. The result is a “typical result” for
the theorem, because the students have yet not been in contact with rules, which
compete with the requested theorem in order to explain the result abductively.

Option 3: Discovery by a couple of results. A mathematical theorem can get more
plausibility, if it is discovered by more than one result. The risk decreases that the
theorem might only be valid for particular kinds of numbers. The students, for
example, calculate 243-9, 16-4 and 25-5 and determine the outcomes by using powers
with the lowest basis. Contrarily to figure 6 the quantity of the equitations and the
number would change in the result and the case of the abduction.

Option 4: Discovery by a class of results. If the results form a whole class, the
discovery of a theorem can get a particular plausibility. Concerning the example, the
students could be required to remember the rule for attaching zeros in order to
multiply powers with the base 10. They should write down this (known) rule by using
powers with the base 10 and recognise a more general (!) rule. The following
abduction describes this option:

sl N e b (v usdnge e Do o aftachig soros b

mle:  Mulaphcation low

ke T bty o the muilisplicd puswers ane the saine

Figure 7: A creative abduction made by a class of results.

Option 5: Discovery with a latent idea of proof. This option does not only lead to a
mathematical theorem, but also to an idea of proof of this theorem. In order to
discover the multiplication law with a latent idea of proof, the following tasks could
be solved: Firstly, write 3° and 3* as products (3° =3-3-3-3-3 and 3* =3-3). Secondly,
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form the product of these products and write it down by using powers with the basis 3
[3°-3°=(3-3-3-3-3)-(3-3)=3-3-3-3-3-3-3=3"]. Thirdly, discover a general rule.

Fesill i O T T T R TR T R, i o B T T O O |

e Muliplcation law

Cusg Thie bases ool e |'|'.||.II|'|'-|||'|I oW Ers are L s gl S+ 2

Figure 8: Discovery with a latent idea of proof

The result of the abduction is getting inferred by a chain of deductions. If these
deductions are generalised, it is possible to prove the theorem (the rule of this abduc-
tion). In other words: In order to elaborate the result the students are confronted with
the main steps of the proof of the theorem before they become aware of it. The idea
of proof is latent because the students have to recognise it and this is not self-evident.

Options for task-design II: Verifying mathematical theorems empirically

Option 1: Verifying by a special case. After the student has discovered the
multiplication law by one or more results an empirical verification is in need of a new
case. Let us consider the example the theorem has been discovered by calculating
3°.3* and 3’. Now the
students are asked to
verify it with 3°-37 by | gesulr; ¥ ¥ =¥ {by the calculator)
using the calculator. If
the  verification is
successful the follo-
wing induction con-
firms the theorem. The problem of this way of verification is that the basis 3 has
already been used to discover the multiplication law. Thus, the students could
recognise a general rule which is only valid for the basis 3. Anyway, the verification
does not confirm the theorem as being a general one.

Casa In = % the bases ane the <ame and 647 =13

rile Blultplication b

Figure 9: An induction made by a special case

Option 2: Verification by a specific other case. If the verification has to be done by
numbers which are completely different to those which had been used to discover the
theorem, the verification gets a specific plausibility. Thus, the fear decreases of
verifying a theorem which is only valid for a few or a particular number.

Option 3 and 4: Verification by a couple of cases (3) and by a class of cases (4). If
the number of the cases of a theorem is increased (and not always with the same
basis), the theorem can get a lot of plausibility:

“[...] having verified the theorem in several particular cases, we gathered strong inductive
evidence for it. [...] Without such confidence we would have scarcely found the courage
to undertake the proof which did not look at all a routine job.” (Polya, 1954, pp. 83)
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If the theorem should be verified by a class of cases, the student needs known rules to
infer the result of the induction. Considering the example, he could use the law of
attaching zeros. Figure 10 shows an induction for using this option:

it L In 10° - B dlee bases ol the ndtiplicd powers ane the some.

mesall:  1EY - 10 1 i wsime e low of attachine seros)

il Multiplication low

Figure 10: An induction made by a class of cases

Option 5: Verification with a latent idea of proof. Nearly analogous to the option 5
for discovering mathematical theorems, the verification of a theorem can also imply a
latent idea of proof. Now the deductive steps, which can be used structurally for the
proof, need to be done to infer the result of the deduction. Let us assume the students
had discovered the theorem by the result 3°-3* =37 which had been determined by the
calculator. Now they should verify it by 7*-7° without using the calculator. The
amount of the numbers causes the students not to solve the task by calculating.

Option 6: Verifying by networking. The former options for verifying theorems
depend on the Bootstrap-Model: A theorem gets more plausibility, if we check more
examples for it. The following option bases on the hypothetic-deductive approach.
Unfortunately, this option could only be reconstructed a few times in textbooks. Let
us consider an example of this option: The student assumes the multiplication law to
be correct. Now he infers that this theorem can also be verified by geometry. In
geometry, powers can be described by areas and volumes. In the three-dimensional
space, a successful verification of the multiplication law can happen, if the student
realises that the volume of a cube can be determined by “base area times height”:

s o' is the height of a cobe mwd o the hase area In termns of height amd
hase area, o and a°, the boes ol the e e sairie, ained 14 2=1

result;:  a@a =a 1% the volime of a cube

il Mluleiplication low

Figure 11: Verifying by networking
FINAL REMARKS

An abduction starts with only one given premise and cannot guarantee certainty. The
Bootstrap-Model and the hypothetic-deductive approach show how abductively
inferred knowledge can be verified. Both approaches are empirical ones. They can be
used to confirm the theorem, but not to prove it. The analyses of textbooks resulted in
different options for tasks-design in order to discover or to verify a theorem. The
presented options for discovering mathematical theorems show how tasks can be
created to enable students to recognise a theorem by a creative abduction that it is
able to
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e increase the chance to discover a new theorem,
e increase the plausibility of the discovered theorem and
e cnable the students to recognise the idea of proof for the theorem while
discovering the theorem.
The presented options for verifying mathematical theorems show how tasks can be
created to verify an already discovered theorem that it is able to

e increase the plausibility of the discovered theorem,
e enable the students to recognise the idea of proof for the theorem while
verifying the theorem and
e  make students aware that a possibly hard deductive proof can be successful.
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