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This study aims to conceptualize the relations between geometric proof (GP) and
geometric calculation (GC) through a survey study with the hypothesis: geometric
diagram and geometric properties necessary for a solution are the keys to determine
the relations between both types of tasks. The empirical analysis shows that students
performed no significant differences between both types of tasks when they formally
learned proof lessons in schools. But students performed significantly better on GC
than on GP items when they have not learned proof constructions. According to the
findings, implications of learning trajectory through GC to GP are provided.

INTRODUCTION

The value of teaching and learning proofs at the secondary school level has been a
matter of some disagreement in the field. On the one hand, some scholars have
argued that proofs and reasoning are fundamental to knowing and using mathematics
(Ball & Bass, 2003). In line with this view, NCTM (2000) identifies proof and
reasoning as a topic that should be taught across all grade levels, thus making the
teaching proof as a central goal of mathematics education. On the other hand,
teachers and students often resist proofs, and, as a result, proofs have been relegated
to a less important role in curriculum, because of the teaching and learning
difficulties encountered in the countries with a tradition of teaching proof in
secondary curriculum (Mariotti, 2006). In geometry, when proofs are regarded as a
difficult topic for students, geometric calculations are an attractive alternative to
formal proofs (Schumann & Green, 2000). The reason for this is because geometric
calculations can provide opportunities for students to become familiar with and apply
geometric properties, the major aim in the secondary geometry curriculum. Another
reason comes from the perspective of cognitive development. Using geometric
calculations to practice geometric properties is aligned with children’s development
of geometry and space conceptions. As Piaget, Inhelder, and Szeminska (1960)
indicate, children at the elementary school level are capable of performing calculating
tasks by applying geometric properties (e.g., size of angle, length of distance) and
using calculations to envisage the truth of mathematics. Theories have been proposed
to specify the relation between proofs and calculations in general (Tall, 2002),
however, these theories do not deal specifically with the relations between geometric
calculations and geometric proofs, especially how geometric diagrams may possibly
influence the relations. Some empirical studies have attempted to survey students’
performance on geometric calculations and geometric proofs (Healy & Hoyles,
1998). However, they could not articulate the relations between both types of tasks
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because of the diverse factors that may influence the comparisons (e.g., the geometric
properties required to obtain the solutions). Another way to assess the relations is to
directly view geometric calculations as the tasks only for applying properties and
rules (Heinze, Cheng, & Yang, 2004; Heinze, Ufer, Cheng, & Lin, 2008). But, the
way to directly treat geometric calculations as lower cognitive-demand tasks may
take risks in elaborating the relations because they ignored the complexity and
particularity a task can be (Stein, Smith, Henningsen, & Silver, 2000). To
conceptualize the relations between GP and GC, this study hypothesises that the
decisive factor to the relation is students’ ability to visualize the diagram in such a
way that allows them to retrieve the geometric properties necessary for a solution.
Thus, a survey study was implemented to examine the proposed hypothesis.

LITERATURE REVIEW

A diagram can be viewed as a strategic location where problem solving happens
(Larkin & Simon, 1987), and they can serve as schemes by which students remember
the steps in solving a problem, the given statements, and the diagram labels (Lovett &
Anderson, 1994). Diagrams can be parsed into chunks to cue the geometric
knowledge needed for solutions, which mirrors how experts solve geometric tasks
(Koedinger & Anderson, 1990). Moreover, diagrams can also function as an artifact
in scaffolding students in learning proofs. Cheng and Lin (2006) reported that junior
high school students’ performance on constructing proofs were improved greatly
through instructional intervention by asking students themselves to read the given
information and then color these properties on the diagrams. The colored parts of the
diagram help students visualize the useful geometric properties for forming an
acceptable proof. Furthermore, Fujita, Jones, and Yamamoto (2004) also claim that
creating and manipulating geometric diagrams mentally or physically can nurture
students’ intuition in geometric problem solving. In this sense, diagrams can bring
geometric calculations much closer to geometric proofs and can be the key to
influencing students’ performance on the two types of tasks. Another relevant focus
of the geometric diagram is the requirement of geometric properties. No matter if
they are solving geometric calculations or doing geometric proofs, students need to
visualize the geometric diagrams and identify the needed geometric properties in
order to set up calculating sentences or form logical proving statements. Research has
reported such work of visualizing the diagram and identifying properties geometric
properties to obtain solutions is difficult for students (Fischbein & Nachlieli, 1998;
Zykova, 1975).

METHODOLOGY

Survey Design

A survey consisting of 4 pairs of GC and GP items was designed based on five
principles. The first principle is to control the diagram configurations used by the
items. Pairs of GC and GP items employ the same diagram configurations, in which
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the labels are located on the same places and the size and orientation of the diagrams
in the survey are all identical. The second principle has to do with the requirement of
the geometric properties necessary for a solution. While a task may have more than
one solution and may require different sets of geometric properties for solutions, the
identical diagrams provide students the same opportunities to visualize and retrieve
corresponding geometric properties. This results in the requirements of geometric
properties being the same for the pairs of GC and GP items. As the below pair of GP
and GC, two sets of geometric properties can generate solution plans for the pair.

The first set of geometric | Given diagram GP item GC item
properties is the triangle sum N BCD S TBCD S
property, the property of collinear collinear and
linear pair, and the isosceles and AC=BC. If
triangle property. The second AC=BC. | the measure of
set of geometric properties is Prove ZACD is
the exterior angle property | B C D | sacD=2. |130° find the
and the isosceles triangle ABC measure  of
ZABC.

property. The third principle
is to control the sequence of corresponding geometric properties necessary for
solutions. Again, when the given diagrams are identical, the study also can control
when and how the geometric properties are needed in a solution plan for pairs of GC
and GP items.
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The figures above show the solution stages for GP (the left one) and GC items (the
right one), which indicate that needed geometric properties appear in the same
sequence for both items. Students need to apply the property of linear pairs and the
triangle sum property to obtain the statement that ZACD=+ABC+.BAC. Next,
students can apply the isosceles triangle property to obtain the GC answer which is
65°and prove the statement #ACD=2.ABC. Parallelizing the required geometric
properties for solutions also ensures that student’s attention is directed to the same
configuration of the diagram, thus, imposing the same cognitive demand. The fourth
principle is to vary individual pairs of items in terms of the shape of geometric
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diagrams and the requirements of geometric properties necessary for a solution. Thus,
this study can prevent superficial learning from students’ prior experiences of
working on a similar diagram setting, which later may become a confounding
variable for the comparison on GC and GP items.

Survey Procedure and Sample

This study employed two survey procedures to administer the items to students. As it
is unclear how students experience doing GP items may influence their performance
on the paired GC items and vice versa, using different survey procedures can benefit
to the understanding of the influence of working on GC items before or after working
on GP items. Using the previous pair items, students can calculate the answer for GC
item directly (ABC=65") by applying the conclusion statement of its paired GP
(£ACD=2.ABC). The direct application of the GP conclusion may free students
from making inferences based on the given information (e.g., AC=BC) or the
geometric properties (e.g., exterior angle property), which is necessary for a solution
that doing paired GP requires. It is also possible that the GP conclusion statement
also provide student a hint to the paired GC solution because they can reason
backward from the conclusion (£ACD=2.ABC) to generate a solution plan of GC.
It is also unclear whether or not asking students to solve GC and GP items at different
times influences their performance on the two types of items. To further understand
how students’ work on both types of tasks interacts as they work on each other, this
study creates a four-condition model. The main idea of the model is to ask students to
work on GP and GC items in different order and different time sequences.

All participating students |Survey Condition |Day 1 Day 2
completed survey items on two go?dltlgléclil tGP 4GP 4GC
consecutive days. Condition 1 Clrs ;Itl 2-a(?rc

referred to the situation in which | o cton = 4GC 4 GP

students solved all four GP items
on Day 1 and solved paired GC
items on Day 2. Condition 2 was

first and GP later

Condition 3: GP
first and GC later

2 GP first and 2
paired GC later

2 GP first and 2
paired GC later

Condition 4: GC

2 GC first and 2

2 GC first and 2

opposite to Condition 1 and asked |[first and GP later |paired GP later |paired GP later

students to solve GC items on Day 1 and paired GP items on Day 2.

For Condition 3, students were required to solve two GP items first and then two
paired GC items on Day 1. These students worked on another two pairs of items in
the same way on Day 2. Condition 4 was also opposite to Condition 3 and asked
students to work on two GC items first and then two paired GP items on Day 1 as
well as the other two pairs of GC and GP items in the same sequence on Day 2.
Because of the study design, Condition 1 and Condition 2 allowed a direct
comparison of order effects (GP before or after GC) as well as Condition 3 and
Condition. In addition, conditions 1 and 3, as well as conditions 2 and 4, should also
allow a direct comparison of timing effects (i.e., paired GP/GC items solved close in
terms of time versus separated by one day). No students were informed that they
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needed to work on GP or GC items on Day 2. Students were also not allowed to
revise their previous work while they worked on the paired items. A total of 413 9™
grade students and 502 8" grade students from three middle schools in Taiwan
constituted the valid sample for testing the hypothesis. By selecting these two grades
of students, this study could also compare different experiences of learning geometric
proofs in their performance on GP and GC respectively. The Taiwanese curriculum
standard of mathematics uses the geometric content related to triangle congruence
and parallel lines properties to gradually introduce the proof concept to students in 8"
grade. In this stage, students are only required to fill out one of the steps in a proof or
provide the corresponding geometric properties for a proof step. For 9" grade,
geometric proofs are formally introduced and students are required to learn how to
construct proofs themselves. The surveys were administrated to 9™ graders after they
had completed all the proof lessons and to 8" graders after they had learned the
geometric knowledge that are necessary for answering the pairs of survey items. In
order to prevent the disparity of classes and schools from being a confounding
variable in the comparison of students’ responses, student participants were assigned
to condition treatments on the class basis. That means students in each class were
equally and randomly assigned to one of the four condition treatments and completed
the required survey items in different time sequences on two consecutive days.

Coding

Cheng and Lin (Cheng & Lin, 2005) clarified students’ responses on geometric
proofs into four levels based on crucial geometric properties of proof solutions:
acceptable proof, incomplete proof, improper proof, and intuitive responses. Their
clarification of these geometric properties in relation to proof solution echoes the
hypothesis of the study, which assumes that the required geometric properties
embedded in diagrams can determine student performance on GC and GP. Moreover,
in order to compare pairs of both items, levels on the GC items corresponding to that
of GP were established in the following manner: correct calculation with reasons,
incomplete calculation, improper calculation, and intuitive response. Points were
assigned for both GP and GC coding. Three points were assigned when students
constructed an acceptable proof or provided a correct calculation with reasons. Two
points were given when students’ responses were coded as an incomplete proof or
incomplete calculation. One point was assigned to students whose responses were
coded as “improper proofs or improper calculations”. Students who provided
intuitive responses or gave up on the survey items received no points. For statistical
purposes, students’ points on the four pairs of items for GP and GC respectively were
added. Moreover, students’ error responses specific to GP items were also analysed.
The reason for doing so is to understand what particular difficulties students may
have in constructing proofs but these difficulties did not exist in GC responses.
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FINDINGS
Students’ performance on GP and GC items

The result shows that 9™ graders performed no significant differences between GP
and GC items (t= -1.945; p>.05), which means that the given diagram and the
geometric properties needed for solutions determine the cognitive demand on 9t
graders rather than the different formats between a proof and a calculation task.
However, 8" grade students performed significant better on GC than GP items (t=-
4.289, p<.05).

Comparison between two survey procedures

Statistical comparison shows that the survey procedures did significant influence
students’ performance on GC items. Students performed better when solving GP first
and GC later than when solving GC first and GP later (t=2.156, p<.05). For GP items,
survey procedures did not cause a significant difference (t=-.339, p>.05).

Comparison of the time effect

For the examination of the time effect on student performance for both types of
items, the statistical results show that students’ performance on GC for the two
conditions (GC/GP solved closely together vs. separated by one day) is not
significant (t=-.020, p>.984). A similar result was obtained on GP items (t= -.508,
p>.05).

Comparison between correct calculation and correct calculation with reasons

This study further examines how superficial visual association of the
diagram(Aleven, Koedinger, Sinclair, & Synder, 1998) plays a role in influencing
students to obtain the numerical answer

without understanding the geometric 100% Sl Comeet
content. To achieve this goal, this study 0 BN
investigates students’ responses between :>0\\ A 8- 81h grade-Correct

. . 0, . o,
correct calculation and correct calculation 60% caleultion with

] . . V reasons
with reasons. The table on the right side 40% — 9th grade-Comect
shows that the percentages of obtaining - caleulation

Percent

. X,
correct answers only are much higher than 4
: 0% L L == 9th grade-Correct
those of correct answers with reasons for o calotlation with
bOth grade 1evels. Par 1 Par2 Par3 Par4 reasons

DISCUSSION

Based on students’ responses on the survey items, this study conceptualizes the
relationship between GC and GP taking the considerations into two perspectives. The
first perspective is about the role of geometric diagram and geometric properties
necessary for a solution. According to 9™ grade students’ responses, this study shows
that diagram and the required geometric properties are the keys to determine
cognitive demand imposing on students. This result also points out the weakness of
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theories and studies describing the relationship between calculation and proof
(Heinze et al., 2008; Tall, 2002) because these theories seem not consider how the
diagram can play a role in influencing the relation between geometric calculation and
geometric proof. The second perspective is about the format differences between a
calculation and a proof task. The analysis also indicates that GP is more cognitively
demanding than GC when students are not equipped with the proving skills. Further
analysis of error responses specific to GP items indicates that the lower performance
on GP may due to students’ difficulties in (1) chaining the proving sentences into a
logic order; and (2) properly using algebraic representations and geometric
representations (e.g., L for right angle) to express a proving sentence. These two
difficulties were not found in their responses on GC since each calculating step
usually results in a numerical answer which will become the given information for
the inference of next calculating step. The circulation of finding unknown measures
and using just found measures to infer other unknown measures in a way scaffold
students in chaining their solution in a reasonable sequence. Regarding the algebraic
and geometric representations, setting up a calculating sentence requires much less
demand than a proving sentence.

Piaget, Inhelder, and Szeminska (1960) claim that children at elementary school level
are capable of performing calculations tasks by applying geometric properties. In line
with their claim, the findings take further step to propose a learning trajectory which
suggests students first to practice GC by visualizing the diagram configurations with
relevant geometric properties. Later on, when they are equipped with the skills of
proof constructions (e.g., chaining proving steps into a logic sequence), they can
successfully transfer experiences of practicing GC tasks into GP construction. While
research has reported students’ difficulties in learning proofs (Fuys, Geddes, &
Tischler, 1988; Heinze et al., 2004), the learning trajectory may also be used to
develop instructional strategies concerning the diagram and requirements of
geometric properties to improve students’ learning of GP, which is worth of further
investigation.

In addition, the result that the percentages of obtaining correct answers only for GC
tasks are much higher than that of correct answers with reasons echoes the shallow
learning proposed by Alven ef al. (1998). But the following research question should
be how the shallow learning may influence students’ competence of constructing
geometric proofs.
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