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This paper reports part of a study investigating the use of mechanical linkages as
contexts for establishing a classroom culture of conjecturing and proof in geometry
at Year 8 level. The focus is on a comparison of students’ use of a physical model
and a Cabri Geometry model of a linkage, examining in particular how the students
exploited the features of Cabri to assist them in producing conjectures and proofs.

The lack of success with traditional methods of teaching geometric proof has
prompted researchers to seek alternative approaches, involving new and old
technology. Recent research on proof has focused on the role of dynamic geometry
software, for example Cabri Geometry II™, as an environment for geometry
learning, with debate as to whether these environments assist or, rather, hinder the
development of deductive reasoning. Hoyles (1998), for example, expresses concern
that unless we can develop a ‘need for proof’, dynamic geometry software may
merely contribute to a ‘data’ gathering, empirical approach to geometry.

Bartolini Bussi (1998) reports on the use of historic drawing instruments to create an
environment where students can ‘relive’ the work of mathematicians in theorem
production. She describes the conjecturing and proof construction processes of a
group of five year 11 students who investigated the geometry of Sylvester’s
pantograph, working with a physical model.

Bartolini Bussi notes that “producing the conjecture was difficult and slow” (p. 742),
and that the students’ written proof was incomplete and not in a logical sequence,
but when they refined it with the teacher’s help, it remained meaningful for them:

The order of the steps recalls the sequence of production of statements, as observed
during the small group work, rather than the logical chain that could have been used by
an expert. Nevertheless it was easily transformed later with the teacher’s help into the
accepted format ... yet, what is important, the time given to laboriously produce their
own proof ensured that the final product in the mathematician’s style, where the
genesis of the proof was eventually hidden, retained meaning for the students. (p. 743)

What is it, then, about an environment that assists students’ conjecturing and proof?

THE STUDY

The research presented here forms part of a study on mechanical linkages, using both
physical and computer models, as an environment for Year 8 students to conjecture,
argue, and construct proofs (see Vincent & McCrae, 2001). The linkages were
carefully selected on the basis of appropriate geometry for Year 8. This report
focuses on a comparison of students’ use of a physical model and a Cabri Geometry
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focuses on a comparison of students’ use of a physical model and a Cabri Geometry
model of a linkage, examining in particular how the students exploited the features
of Cabri to assist them in producing relevant conjectures.

The participants, who had no previous formal exposure to deductive reasoning, were
from an extension Year 8 Mathematics class at a private girls’ school in Melbourne.
Prior to the research the following geometry was taught/revised: angles in parallel
lines, triangles and quadrilaterals; Pythagoras’ theorem; and similar and congruent
triangles. Tchebycheff’s linkage for approximate linear motion (Vincent & McCrae,
2001) was used to introduce the students to the need for proof by showing them that,
although the midpoint of one of the links appeared to move on a linear path, closer
investigation showed that the path was in fact not exactly linear. For each of the
linkages studied, the students worked in pairs, constructing their linkages from
plastic geostrips and paper fasteners, as well as having access to a Cabri model of the
linkage which had been previously prepared by the teacher-researcher. The students
were video-taped during their conjecturing, argumentation, and proof construction.
At the conclusion of each task, the students were asked which model they considered
most useful in helping them in their conjecturing and proof construction, and which
one they most enjoyed working with.

Sylvester’s pantograph: Case studies of two pairs of students

Before investigating Sylvester’s pantograph, the students had completed pencil and
paper proofs for the angle sum of triangles and parallelogram properties, and had
worked with at least three other linkages. The students constructed the rhombus
version of the pantograph, using the diagram shown in Figure 1, where OA = OC =
AB =BC = AP = CP' and ZPAB = ZP'CB. They explored the linkage (Figure 2) for
approximately 10 minutes before being given access to the Cabri model. They were
then free to choose the model with which they preferred to work. Each pair of
students worked for two 50-minute lessons, conjecturing, arguing, and constructing
their proofs, with the teacher-researcher (TR) occasionally intervening.

Figure 1. Figure 2.
Students Ce and Ch

Ce and Ch drew a shape on paper and traced over the shape with point P of their
geostrip pantograph so that P' traced an image of their shape (Figure 3).
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Ce:

Ch:

TR:
Ch:

It’s the same but it’s not in the same direction. It’s been turned.

[Spreads her thumb and fingers to compare the size] It’s the same size. It’s turned
45 degrees.

How do you know it’s 45 degrees?

Just guessing, ’cause it was about half 90.

Image

< A /

Figure 3.

Ce and Ch were confident that the image was the same size as the original, but they

were
there

less confident of their conjecture about the angle of rotation, particularly as
seemed no obvious reason why it should be 45 degrees. When given the Cabri

model, their initial reaction was to use the same approach as for the geostrip model,
but they were not sure how to proceed. With Trace on P', Ch carefully dragged P in
the shape of a square so that P' traced the same shape. She then switched on Trace

for P

and tried to drag P so that P' moved around its previous path. However, she had

trouble controlling the mouse to follow the small shape and began to move P
haphazardly, before dragging it horizontally across the screen (Figure 4), when she
suddenly noticed that the paths of P and P' were converging;:

Ch:
Ce:
Ch:

Ce:

Ch:

Ch:
Ce:

[Excitedly] Goody goody goody ... we’ve got *em to meet! And then look ...
Oh, we’ve got the angle there ...

We’ll make a segment. And from there down to about there. [Draws segments over
traces of P and P' — see Figure 5] Measure the angle ... 30.1. [Measures angles
PAB and P'CB] 30! 30 and 30. So it rotates the angle of that [PAB or P'CB]!

Yes!

They’re the same distance [indicates from P to O and from P' to O] ... maybe if we
draw segments. [Ch draws segments OP and OP' — see Figure 6]

Let’s measure that angle ... [ POP'] ... it looks like the same angle again.

30! So that [OP'] is always turned around 30 degrees from that [OP].

Ch and Ce recognised that their method of drawing segments over the converging
traces (see Figure 5) involved some error, so they seemed unconcerned by the
discrepancy between the measured angles, 30° and 30.1° the size of angle POP'
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seemed to carry greater significance. Ch and Ce were now confident about the
rotation of the image: “The image rotates [through] the angle of BAP”.

c

Figure 4. Figure 5.

Ce and Ch were now able to explain why their drawing and its image were the same
size, and were able to write the geometric proof (Figure 7):

Ch: They’re congruent triangles [OAP and OCP'].

Ce: Yeah, ’cause the sides are the same [OA, OC; AP, CP'] and so are those angles
[OAP and OAP'].

TR: Why are those angles equal?

Ch: The [opposite] angles in the rhombus are equal and then they both have the same
fixed angle bit added on.

Ce: So therefore OP and OP' are equal.
TR: And what does that tell you?
Ch: That’s why the copy is the same size.

Proof: LQABZLOGR..... (%U()
...... LRARELECR. . (aiven)...

.,.‘.,..4..@@.9.%.A9m...(§a§ ...............
e O T O

Figure 6. Figure 7.

Their next task was to prove their conjecture that the angle of rotation POP' was
equal to the fixed angles PAB and P'CB. Ch drew segments from P to B, B to P' and
P to P' on the worksheet diagram (see Figure 8).
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Ce:

Ch:

Ce:

TR:
Ce:
Ch:
Ce:
Ch:
Ce:
Ch:
Ce:
Ch:
Ce:

Well ... could we make a triangle there? [points to O and from P to P']

But B’s not in line ... see ...why don’t we use the angles in the rhombus?

OK, let’s put some letters in. We’ll call this [PAB] a and these [BCP' and POP'] a.
We don’t know yet ...that’s what you’re trying to prove.

Oh, yeah, we’ll call it [POP'] b, and we’ll call this [OAB] ¢ and this [OCB] is ¢ too.
And call those d [points to AOP and COP'].

And those [APO and CP'O] are d as well.

Oh, yeah ... isosceles triangles.

And this [ABC]is e. OK ... e equals 2d plus b.

d plus d plus a plus ¢ equals 180 ’cause that’s a triangle

And 2d plus b plus ¢ equals 180 ’cause angles in the rhombus.

So b must equal a!

Yeabh, that’s it!

&»

ex2d tb

2d tate = 1$0°

.» 4> b

Lo ® ¢

Figure 8.

Both students then wrote correct proofs; Figure 9 shows the proof written by Ch.

Prove: LPOP‘:ABCP':‘p-‘lB .....................................
Proof: ..L.C.Q.P...3
UOP....5. L ORA. . ((ohgruent. . b .V..Liﬁ.exﬂu,a’.)..;..!{

:Ll....‘i.t.‘.l..‘:.ﬁ.t.‘l...E.!.@Q.f...(t!.‘.fﬂ.!\yke) ............................ »

....L..C.R.A'.Q“(.J..'Sas.e.ée.;..._‘t!.rl.'a.n@,t.g... B

.q.r.\g..t..e....o, B e

Figure 9.
Students Lu and Li

Like students Ch and Ce, Lu and Li were reasonably confident that the geostrip
pantograph was producing a congruent image but they too were less certain about the
angle of rotation and unsure how to determine the angle with the geostrip model:
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Lu: Well, it creates a mirror image ... well, not exactly a mirror image but ...
Li: ... if it was more accurate.

Lu: A congruent shape of the shape and it goes in a circle. If you kept on following the
trace it would go round and round [points to rotation of the linkage about O]

Li: Maybe that angle [points to the fixed angle, PAB] ... I'm not sure ... maybe not ...

Lu: When you move it [points to P] up at the beginning it [points to P'] moves around
and then it just makes the rest of the shape.

Li: I was thinking that many degrees [points to angle PAB] ...but I don’t know why.

At this point the girls were given the Cabri pantograph. They used the same
approach in Cabri as they had done with the geostrip model, drawing a triangle and
moving P around it so that P' traced the image (Figure 10). Because of the transitory
nature of Cabri traces, Li then drew a triangle over the image trace.

A

Figure 10.

Lu measured angles PAB and P'CB as 30 degrees (Figure 11), then carefully dragged
the original triangle, placing it over the image in order to measure the angle between
the two triangles. Seeing the linkage as an accurate geometric diagram seemed to
encourage the girls to add construction lines and to notice congruent angles.

Figure 11.

Having drawn and measured segments OP and OP', and measured angle POP', the
girls now understood how the pantograph was working:
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Lu: 29.1...it’s point 9 off.
TR: So what is your conjecture?
Lu: The angle which the copy of the shape rotates is that angle of the pantograph [PAB].

Lu and Li then began writing their proofs, with Li demonstrating that she had a clear
understanding of the side-angle-side condition for triangle congruency. The girls
discussed and sorted their statements into a logical sequence as they wrote, for
example:

Li: Let’s do the sides first. OA equals AP equals OC equals CP' ... then angle OCP'
equals ... OAP because they both have 30 degrees ... they share 30 degrees ... we
shouldn’t do that yet [erases] ... angle OA ... angle OAB equals ...

Lu: Angle OCB.
Li: And angle BCP' equals BAP because given ... OCB plus BCP' ...
Lu: Those two added together, that whole angle ... that means ...

Li:  Once we’ve proved that angle, then the whole thing’s easy ’cause side angle side ...
see if you have two sides and how big it’s going to be in between ... when you join
them up the triangles will be the same ...

DISCUSSION

In their responses to the linkage questionnaire which they completed after working
with the pantograph, all the students agreed that operating models of the linkage
made the geometric properties more obvious. Even though three of the four girls had
enjoyed working with the geostrip model more than with the Cabri model, they all
believed the Cabri model to be more useful than the geostrip model for finding out
why the linkage worked. Significantly, perhaps, Ch — who had become quite
excited by the converging traces of P and P' (see Figure 4) — indicated that she had
enjoyed the Cabri model more than the geostrip model.

The students’ use of Cabri was by no means restricted to dragging. The function of
the pantograph led naturally to the use of the Cabri Trace facility, and transformation
of the screen construction indicated where additional construction lines, for example,
OP and OP', might be useful. In other linkages explored by the students, tabulation
of angle measurements was also used. The students’ prior familiarity with the
features of Cabri was therefore an important aspect of their successful use of the
Cabri linkage in helping them to produce their conjectures and construct proofs.

The ease with which they could trace the paths of points, add construction lines, and
accurately measure angles and distances meant that the students made little attempt
to return to the geostrip model after they had been given the Cabri model. Once the
students were confident of their conjectures, they tended to work with paper and
pencil diagrams during the proof construction. This was, however, not always the
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case; the students worked with a number of linkages during the classroom research
and with some of these they would sometimes go back to the physical linkage to
check an observation they had made with the Cabri model, or return to the Cabri
model while they were constructing their proof.

The students in the study described by Bartolini Bussi (1998) were required to
produce their own geometric drawing of the linkage from the model and to provide a
description from which another person could construct it. This resulted in the need to
determine the structure of the linkage, for example, by measuring the lengths of the
linkage bars. This was, of course, an important aspect of Bartolini Bussi’s project,
which aimed to make these historic drawing instruments ‘transparent’ to students.
The Cabri model, on the other hand, provided a ready-made geometric figure, which
allowed the students to focus more immediately on the functional relationships
within the linkage, rather than its basic structural properties. This may have
contributed to the ease with which these Year 8 students were able to present their
statements in a logical order, compared with the initial difficulty experienced by the
Year 11 students in the study described by Bartolini Bussi (1998).

It would seem, then, that the imagery, both static and dynamic, of the Cabri
environment made a substantial contribution to the conjecturing process, but also
challenged these students to produce an explanation. The features of dynamic
geometry software — constructions based on Euclidean geometry, accurate
measurements, the tracing of loci and the drag facility — make the software highly
suitable for exploring the geometry of linkages. Rather than eliminating the need for
proof, the convincing evidence and the unique opportunities for exploration and
discovery which the software provided gave the students the confidence and desire to
go ahead and prove their conjectures. However, the tactile experience and
satisfaction of working with actual physical linkages may also represent a significant
motivational aspect, at least for some students, and should not be over-looked.
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