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Our general concern is to investigate the role that new technologies play in the
development of processes of proof. We use Balacheff’s work (1987, 1999) to talk of
pragmatic proofs vs. intellectual and formal proofs. We present part of a case-study
from a larger research where students used a Logo-based microworld for the
exploration of infinite sequences and series, to illustrate how some of the elements that
computer microworld explorations, activities and visual means bring, can lead to a
process of discovery and acceptance of mathematical results, and create stepping-stones
(pragmatic proofs) in the development of mathematical proofs.

INTRODUCTION AND THEORETICAL FRAMEWORK

We are interested in investigating the role that new technologies play in the stages of
proving in mathematics education. Research in this direction is often related to geometry
and the influence of dynamic geometry systems on the learning of mathematical proof
(Hoyles & Jones, 1998; Villiers, 1998, Balacheff, 1999). However, in this paper we draw
data from a different kind of study where students used a Logo-based microworld for the
exploration of infinite sequences and series. We aim to illustrate how the environment
and its tools gave students enough means of mathematical exploration and expression
through which they could discover patterns, make generalizations and conjectures, and
validate their results.

We begin with a brief discussion on the function of proof as a means of understanding,
and the role of technology for developing a sense of proof and intuition before a formal
proof is presented. We then present a brief summary of some important concepts
developed by Balacheff (1987, 1999) that will serve as part of our theoretical
framework. Finally, we present sample data from our study to illustrate the ways in
which computational experiences can function as a means of creating understanding and
acceptance of mathematical results, thus constituting processes of proof.

The construction of meanings through proofs, and the role of technology

The function of proof as “a key tool for the promotion of understanding” has been
stressed by Hanna (1995). While Hanna defends the value of formal proof, she also
makes a distinction between the function of proof in mathematics and that in
mathematics education:

while in mathematical practice the main function of proof is justification and verification, its
main function in mathematics education is surely that of explanation ... It might be a
calculation, a visual demonstration, a guided discussion observing proper rules of
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argumentation, a preformal proof, an informal proof, or even a proof that conforms to strict
norms of rigour ... Clearly the challenge is to have [students] understand why [results] are
true. (p. 47)

Other studies have highlighted features that are making clear the complex field of
mathematical proofs: the role played by empirical evidence in contrast with deductive
arguments (Chazan, 1993); the difference between argumentative reasoning and
deductive reasoning (Duval, 1991); and students' proof schemata (Harel, 1996).

With the advent of new technologies, the empirical methods of mathematics research
have been revitalized. Mathematicians themselves are recognizing that technology is
changing the way we approach proving. Thurston (1994), who analyses the nature of
proof and of mathematics itself, also emphasizes that it is a search for understanding
which is at the basis of the exploration and logical processes leading to a proof; and he
advocates the use of computers for exploration and discovery of mathematical ideas,
giving priority to what he calls "humanly understandable" proofs over formal proofs.

Other authors and researchers have investigated the role of computer-based explorations
and visualization to develop a sense of proof and give intuition for formal proof (for
instance, by building up an overall picture of the relationships involved), considering
these important complementary elements to mathematical proofs (e.g. Barwise &
Etchemendy, 1991). Among those are Cuoco & Goldenberg (1992) who consider that
the activity of constructing proofs involves a research technique where conjectures arise
through the combination of experimentation and deduction.

One of the difficulties with proving in school mathematics is that concepts which expert
mathematicians regard as intuitive are not intuitive to students since intuition depends on
previous experience (Tall, 1991). To overcome this, Tall (op.cit., p.118) considers that:

by introducing suitably complicated visualizations of mathematical ideas it is possible to give
a much broader picture of the ways in which concepts may be realized, thus giving much
more powerful intuitions than in a traditional approach. ... intuition and rigour need not be at
odds with each other. By providing a suitably powerful context, intuition naturally leads into
the rigour of mathematical proof.

The components of proving

Balacheff (1987, 1999) has introduced certain ideas that we consider important for our
analysis. He distinguishes between pragmatic proofs and intellectual proofs;
emphasizing the role of language in the passage from the former to the latter. Pragmatic
proofs are those based on effective action carried out on the representations of
mathematical objects. They lead to practical knowledge that the subject can use to
establish the validity of a proposition. Intellectual proofs demand that such knowledge is
reflected upon, and their production necessarily requires the use of language that
expresses (detached from the actions) the objects, their properties and their relationships.
In other words, pragmatic proofs are based on action, while the use of a functional
language (which includes a specific vocabulary and symbolism) and a “mental
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experience” (where actions are interiorised) characterize the transition to the intellectual
ones. The transition from pragmatic proofs to intellectual proofs culminating in
mathematical proof, involves three components: the knowledge or levels-of-action
component (the nature of knowledge: knowledge in terms of practices — “savoir-faire ”;
knowledge as object; and theoretical knowledge); the language or formulation
component (ostentation, familiar language, functional language, formal language); and
the validation component (the types of rationale underlying the produced proofs: from
pragmatic, to intellectual, to mathematical proofs).

COMPONENTS OF PROOF IN A LOGO MICROWORLD

Here, we present an example to illustrate how certain computational activities constitute
pragmatic proofs, with progress on the level of the first component (knowledge), and
some progress in the other components. Although we cannot provide evidence on how
computational activities can lead to the development of more rigorous intellectual
proofs, we believe that progress achieved in earlier stages constitute suitably powerful
experiences that create familiarity and understanding of the problem (an intuition)
necessary for transition to the latter (cf. Tall, 1991; see above). It is likely one of the kind
of experiences incorporating exploratory computer and visual activities considered
useful and advocated by some of the researchers reviewed above (e.g. Tall, 1991;
Thurston, 1994; Cuoco & Goldenberg, 1992), and which provides elements of proof as
“explanatory” (Hanna, 1995).

This example (from a case-study of a pair of high-school students) is taken from a larger
research that investigated the mediating role of a Logo microworld designed for the
exploration and study of infinite sequences and series, in students’ conceptions of
infinity and infinite processes. That study involved detailed case studies of 4 pairs of
students working and interacting with the microworld. (Students worked in pairs to
facilitate the sharing and discussion of ideas —simultaneously providing the
researcher with insights into their thinking processes— and give them independence
from the instructor). Each pair of students, previously instructed in Logo programming,
worked with one computer for five 3-hour sessions. To facilitate the analysis of students'
experiences, we worked with only one pair of students at a time, using a clinical
interview style. The role of the researcher was that of a participant observer, suggesting
the field of work (the initial procedures and activities), as well as new ideas for
exploration when needed, yet allowing students to be in control of the explorations,
giving them freedom to explore and express their ideas. Students were informally
interviewed throughout the sessions but formal interviews were conducted at the
beginning and end of the study.

As part of the microworld activities, students explored sequences such as {1/2"}, {1/3"},
{(2/3)", {2"}, and {1/n}, {1/n"'} and {1/n*}, and the sequences of their corresponding
partial sums. They wrote Logo procedures to construct visual models of those sequences,
using Logo’s turtle geometry: spirals (Fig.1) (where each successive “piece” of the spiral

PME26 2002 4-171



represents a term of the sequence, so that the total length of the spiral corresponds to that
of the sum of the terms, i.e. the corresponding series), bar graphs (Fig.2), staircases, and
straight lines (where again, the total length represents the corresponding series or partial
sum of the terms of the sequence).
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Fig.1: Spiral model for  Fig2: Bar graph model for the sequence {1/21}
the sequence {1/21} with numeric output

For example, one of the initial Logo procedures used in these activities was of the form:

TO DRAWING :L Where MODEL described the steps for building a
IF :L <1 [STOP] model such as a spiral (FD :L RT 90) or a bar graph
MODEL (FD :L JUMP), and FUNCTION described the
DRAWING (FUNCTION :L) operation on :L at each step (e.g. :L/2).

END

Thus, the different visual models for the same sequence provided different perspectives
of the same process. As the explorations progressed students added Logo commands to
their procedures that would allow them to carry out a complementary analysis of the
numerical values (to further analyse their behaviour, and the apparent limits, if any
existed or appeared to exist). Through the observation of the visual (and numeric)
behaviour of the models, students were able to explore the convergence, and the type of
convergence, or divergence, of a sequence and its corresponding series.

The microworld was designed to simultaneously provide its users with insights into a
range of infinity-related ideas, and offer the researcher a window (cf Noss & Hoyles,
1996) into the users' thinking processes. The microworld provided a means for students
to actively construct and explore different types of representations (symbolic, visual and
numeric) of infinite sequences via programming activities. In general, the computer
setting provided an opportunity to analyse and discuss in conceptual (and concrete)
terms the meaning of a mathematical situation. For example, drawing a geometric figure
using the computer necessitated an analysis of the geometric structure under study and
an analysis of the relationship between the visual and symbolic representations.

What is relevant for us here, is that the exploratory setting of the microworld activities
allowed students to engage in an active process of discovery of the properties and
characteristics of the processes under study. That is, the environment seems to have
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provided a language for asking questions, as well as tools for exploring these questions.
In many cases students found what seemed like patterns and properties, which led them
to formulate and test conjectures, as well as articulate relationships and build
generalizations.

There were several levels in which the microworld activities functioned as stepping-
stones towards a proof. At a first level, students made observations and discoveries
situated within the medium of the microworld. We have described elsewhere (e.g.
Sacristan, 1997) how students were able to discover patterns related to the processes
under study but situated within the context of the microworld environment. By playing
in, interacting with, and working within the microworld, they could express themselves
through the tools, activities and forms of symbolism built into the environment. At a
second level, some students were able to abstract and articulate their findings in a way
that could be taken beyond the medium in which the findings were constructed;
consciously exploiting the tools of the microworld for discovery, exploration, and
“pragmatic proof" (Balacheff, op.cit.) of mathematical relationships or "theorems".

Pragmatic proofs: discovery, generalization and validation in the microworld

Through the sample data below, taken from one of the case-studies (a pair of 16-17 year-
old boys: Manuel and Jeslis), we aim to illustrate, in particular, how students made
predictions and then tested their validity by using all the available tools in the
microworld.

During the second worksession of explorations, as described above, of sequences of the
type {(1/k)"}, these students discovered that the series of the type Zk_lw where the
n=l1

integer! £>1, converge to k—lf These students had been exploring and comparing the

sequences {1/20}, {1/31} and began to discover a pattern in the behaviour of the
corresponding series: Manuel observed that as they increased the denominator value k in

the sequences of the type {#} , then the limit of the corresponding series was smaller

and in fact seemed to have as value kL] They explicitly constructed a generalization for

this mathematical result (which later they would call proudly "their theorem”) and used
it to predict the probable behaviour of other sequences and series of the same type:

Manuel: Look, if you subtract 1 from the number that is the base in the denominator, and
you divide 1 by that number, then that is the number to which it will approach. If
we do it with 3: 3 minus 1 is 2, and it tends to a half..
So if it was 1/2000", the sum must approach 1/1999...

Jesus:  Yes, the bigger the base in the denominator, the smaller the limit.

! Manuel and Jesus seemed to consider & implicitly as a positive integer larger than 1, although they
did not make this condition explicit.
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Manuel: But now we have a method for knowing to where it approaches....
We saw that 1/2" became small very quickly, but the case of 1/3" decreases much
much more quickly. And we saw that its series didn't tend to 1 like the previous
one, that it approached a half, so we noticed a more or less regular behaviour, so if
we wanted to know to how much the series of 1/2000 would be we would only
have to reduce it by a number, and it would tend to 1/1999.

Manuel and Jests then employed the medium and its tools to test out their predictions,
looking for a proof of their conjecture. They began by changing the sequence generating
function to 1/4~, predicting that the corresponding series would tend to 1/3. They used
all the resources available to explore this sequence and its series, looking at all the
available visual models (the Spiral, Stairs, Bar Graph and Line models). They were
amazed at how quickly the values of the sequence decreased. From the rapidly
decreasing behaviour of this sequence they deduced that the corresponding series
converged, which they visually verified, using the Line model. Although the visual
explorations were enough to convince the students of the validity of their conjecture,
they complemented these with a numeric exploration of the partial sums (they built a
procedure which computed the value of a partial sum). They observed that the 20th
partial sum printed out to be 03333333333, confirming further their hypothesis. A final
test of their conjecture was carried out by exploring the sequence {1/13"}, through visual
and numeric representations — which showed the much more rapid decrease of this
sequence — and again verified that the corresponding series tended to the predicted
value of 1/12.

For Manuel and Jesus there was now no doubt that the conjecture was true, but Manuel
did worry that this mathematical generalization would not hold if the value of k was
infinite (what Balacheff, 1987, 1999, has described as a crucial experience), and he
looked for favourable arguments:

Manuel: Listen... there might be a contradiction in our assumption: if we did one over
infinity... Ah! but infinity minus any number is still infinity..., so we are right! It
tends to zero. If one over infinity tends to zero, then also one over infinity-minus-
one, because infinity minus one is infinity, then it also tends to zero. And here we
have that the bigger the base of the denominator gets, the smaller the series.

It is worth noting that most students, including a pair of younger students (two 14 year-
old girls, one of them called Consuelo) discovered the rule for the behaviour of the series

of the type sz , which they tested and then generalized. Manuel and Jests were more

experienced mathematically which was reflected in the way they expressed the rule, but
the younger students also constructed the generalization within the context of the activity
— what Noss & Hoyles (1996) have called a situated abstraction — expressing it
relative to the inputs used by the procedure (e.g. the scale):

Consuelo: So the sum of the bars for 1/3 it's one half [the scale], and for 1/4 it would
be 1/3 [of the scale], and for a fifth: 1/4 [of the scale], and so on.
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DISCUSSION AND CONCLUDING REMARKS

The possibility of working with many cases (different sequences of the same type), and
use diverse resources (different visual models and complementary types of
representations: visual and numeric), provided students with a means to (i) infer their
own generalization through the discovery of a pattern, and (ii) to validate and confirm
their predictions and generalization (becoming convinced of the general validity of their
conjecture). In this sense, the microworld became a mathematical laboratory. The results
were not formally proven, and the students were aware of this, but the process of
repeatedly observing different variations, cases, and situations, was enough to convince
the students of the validity (or in other cases falseness) of their conjectures?, constituting
pragmatic proofs. Elsewhere, we called these experiences “situated proofs” (Moreno &
Sacristan, 1995; Sacristan, 1997). These are pragmatic proofs that result from the
combined use of all the elements available in the microworld in an attempt to confirm
conjectures. Situated proofs are experiences that lead students to discover and make
sense of a mathematical relationship, convincing them of its validity. In the same way as
situated abstractions, these experiences are dependent on the tools of the medium (hence
the term “situated”). They are therefore not yet detached enough from the representations
of the objects and the actions to constitute an intellectual proof.

Nevertheless, progress is shown for all three components. The fact that students
spontaneously tested their conjectures (adjusting them as a result of the explorations), in
order to convince themselves (and others) of their validity, shows progress on the level
of the validation component. On the level of the knowledge component, the formulation
of predictions or conjectures involved a process of reflection and analysis on the part of
the students, as they had to, for instance, evaluate the role and relationship of the
variables involved. Also, the Logo-based activities allow students to construct certain
forms of symbolism? to express and interact within the medium (situated abstractions);
this is progress on the level of the language component. Thus, these experiences were
often powerful enough to act, at least, as explanatory proofs (Hanna, 1995). They are
pragmatic proofs that can be thought of as the collection of activities that build meaning
for a theorem before a formal proof is presented.

Thus, the use of technological tools can provide a field of exploration and mathematical
experimentation in which it is possible to deal with mathematical content through the
representations provided by the medium. Proofs on the pragmatic level can become more
powerful and enrich students’ mathematical experiences by allowing them to discover
results and formulate probable conjectures. In this sense, we consider that this type of

2 Exploration through visual and numeric representations, observation of the behaviour of the
process under study, and the structure of the code, are all elements that students used to convince
themselves of the convergence or divergence of a process, and/or of the existence of a limit.

3 This contrasts with findings in another of our studies using Cabri-Géometre, where geometrical
objects are manipulated, and there is a development of geometric visualisation, but the use of the
symbolic geometric language is very limited.
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microworld activities can strengthen the foundations for the passage to intellectual
proofs. However, more research is needed to find activities that follow or are based upon
computational activities, which will lead to the transition towards intellectual and formal
proofs; in agreement with Hanna (1995), the role of the teacher is likely to be crucial.
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