» «« BECAUSE A SQUARE IS NOT A RECTANGLE* -
STUDENTS’ KNOWLEDGE OF SIMPLE GEOMETRICAL
CONCEPTS WHEN STARTING TO LEARN PROOF

Aiso Heinze, Carl von Ossietzky Universitit Oldenburg, Germany

The knowledge of concepts is essential for students when they start to learn proof.
Empirical findings of a study with 106 grade 8 students show that there are deficits in
students’ concept understanding scheme for quadrangles. These deficits are
particularly based on a different idea of classification of quadrangles and difficulties
in the understanding of the mathematical language and thinking - problems which
will cause difficulties regarding learning and teaching proof.

INTRODUCTION

The mathematical definition is one of the basic terms which together with axioms,
theorems, proofs, corollaries, lemmas and propositions constitutes the skeleton of the
mathematical theory. Though it is clear that a definition has to satisfy certain
necessary properties like noncircular, non-contradictory, there is little agreement
which properties are sufficient to constitute a good and elegant definition (cf. Shir &

Zalavsky, 2001). However, elegant or not, mathematical definitions are prerequisites
for the formulation of theorems and proofs and, therefore, they are essential for the
development of mathematics as a deductive theory.

Teaching definitions in mathematics classroom is a task which depends on more than
only mathematical requirements. In particular, in geometry classroom on the primary
level students do not learn geometry as a deductive theory. Based on pedagogical and
psychological reasons, geometry is introduced to young students as a theory of the
visual space. It is obvious that in this stage the concept formation and the recognition
of simple mathematical “theorems” is not undertaken by teaching formal definitions
but mainly by examples and visual representations. The transition from everyday life
thinking in the theory of the visual space to a scientific thinking in deductive
geometry in higher grades is afflicted with many problems. These problems cause
students’ difficulties in advanced mathematical thinking as it is required in problem
solving, reasoning and proof. One of the basic deficits can be found in the students’
personal knowledge of concepts and its usage in a mathematical context.

THEORETICAL FRAMEWORK

Scientific thinking skills and prerequisites for learning reasoning and proof

The last decades many researchers from cognition psychology and mathematics
education contributed to the description of the development of students’ thinking
skills. Research in this area shows that there are several restrictions in the
preadolescent scientific thinking (e.g., Kuhn, 1989). For example, an empirical-
inductive reasoning is typical for students on the concrete-operational stage, whereas
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a more hypothetical-deductive reasoning is typical for the formal-operational stage
(Flavell, 1977). This hypotheses is supported by empirical findings of studies with
grade 8 and grade 10 students’ ability in mathematical reasoning and proof (Healy &
Hoyles, 1998; Reiss & Thomas, 2001).

In a former study with students in upper secondary level we identified different
prerequisites for the understanding of proofs in the geometry classroom. As described
in Reiss, Klieme & Heinze (2001) geometrical competence is specifically influenced
by methodological knowledge, declarative knowledge, metacognition and spatial
reasoning. For the evaluation of students’ declarative knowledge we chose the
concept “congruence”, a central concept of school geometry. The students were asked
to give a definition, an example, a visual portrayal of the word “congruence” and to
name a mathematical theorem in which the concept features. Our analyses have

revealed considerable deficits in declarative knowledge. It emerged that even students
at the end of secondary level often have only a vague intuitive understanding of
concepts such as "congruence", that this understanding is restricted to examples, and
that they have no exact mathematical knowledge of the respective definitions and
theorems.

The last point corresponds to findings of several other studies: students’ ideas about a
geometrical concept and the definition of this concept are frequently inconsistent
(e.g., Hershkowitz & Vinner, 1982; Wilson, 1990). The use of examples as an
interpretation of definitions is often restricted to certain prototypes which, in addition,
contain irrelevant characteristics. Distinguishing between these irrelevant
characteristic properties and the relevant definitional properties is difficult for
students (e.g., Burger & Shaughnessy, 1986; Wilson, 1990). Other problems related
to definitions are the students’ understanding of necessary and sufficient conditions in
definitions and their imprecise use of words if they give definitions (Burger &
Shaughnessy, 1985, 1986; Wilson, 1990). These deficits in students’ ideas about
geometrical concepts are strongly affected by the representation of these concepts in
mathematics classroom and textbooks (e.g., Burger & Shaughnessy, 1985).

Concept definition, concept image and concept usage

As mentioned above we have to distinguish between the mathematical definition of a
concept and the personal image of this concept in student’s mind. To describe this
fact Vinner and others introduced the theoretical model of the personal concept
image (Vinner, 1991) which was used to identify students’ ideas of different
mathematical concepts like function, limit etc. (e.g., Tall & Vinner, 1981). The
concept image is described as

113

. something non-verbal associated with the concept name. It can be a visual
representation of the concept in case the concept has visual representations; it can be a
collection of impressions or experiences” (p. 68, Vinner, 1991).
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The concept image is evoked in the memory by the concept name. It is specific for an
individual. The existence of a concept image is a necessary condition for the
understanding of a concept. “To acquire a concept means to form a concept image”
(p. 69, Vinner, 1991). The knowledge of a concept definition may be independent
from the formation of a concept image: to know a concept definition does not imply
to understand the concept.

Moore (1994) extended the ideas of Vinner to the concept-understanding scheme.
The concept-understanding scheme contains three aspects of concept understanding:
the concept definition, the concept image and, as a third aspect, the concept usage.
The concept usage “refers to the ways one operates with the concept in generating or
using examples or doing proofs” (p. 252, Moore, 1994).

Both, Moore (1994) and Vinner (1991), described the main problem for students
using concepts in their mathematical activities. If a student is confronted with a
mathematical problem in which a certain concept appears, then in his or her mind the
associated concept image is evoked. To get a correct solution of the problem the
student has to check, if the operation done with the evoked personal concept image is
compatible with the concept definition. Here a difference between every day thinking
and scientific thinking appears: in every day thinking, in general, it is not necessary to
check the concept definition (in many cases such a concept definition even does not
exist, e.g., for the concept “tree”). In a mathematical context, in general, it is
indispensable to compare the personal concept image with the concept definition. The
ability to “switch” between the personal concept image and the concept definition is
essential for the solving processes in a mathematical context. It can also be observed
in the research process of mathematicians: mathematicians do not retrieve definitions
and theorems from their memory to construct logical deductions. On the contrary,
first they do not pay attention to each detail in the process but consider the line of
argumentation in broad terms and recognise important properties and connections.
Finally, if they know how to argue they will construct a mathematical proof using
formal definitions and theorems (cf. Koedinger & Anderson, 1990).

Partitional and hierarchical classification

When discussing the concept understanding scheme of geometrical concepts like
triangles or quadrangles, we must also consider the classification of these concepts.
As described in de Villiers (1994) there are two main classification types: the
hierarchical and the partitional classification. Hierarchical classification means the
classification of a class of concepts in such a manner that the more particular concepts
form subclasses of the more general concepts (class inclusions). In contrast, in a
partitional classification the various subclasses of concepts are considered to be
disjoint from one another. For example, in the first case we can define squares as
special rectangles and rectangles as special parallelograms. In the second case a
square is not a rectangle and a rectangle is not a parallelogram. Since in mathematics
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classifications and the associated definitions are arbitrary in a certain sense, the
choice for a hierarchical or partitional classification is a question of convenience and
economical and personal reasons. In general, mathematicians prefer a hierarchical
classification for triangles and quadrangles.

There are several studies which show that students in lower secondary level still tend
to a partitional classification in the case of quadrangles (e.g., Burger & Shaughnessy,
1985; de Villiers, 1994, 1998). Moreover, de Villiers (1994) showed that even
students who exhibit excellent competence in logical reasoningstill prefer to define
quadrangles in partitions, if given the opportunity. He suggests to treat the
classification of concepts like triangles and quadrangles in such a way that a
meaningful discussion is possible. As described in deVilliers (1998) by comparison
of advantages and disadvantages the students will then realise that hierarchical
classifications are more economical than the partitional ones.

RESEARCH QUESTION AND DESIGN OF THE STUDY

According to the theoretical framework described above we investigated aspects of
the concept understanding scheme of students who started to learn proof. As concept
we chose quadrangles, in particular, squares and rectangles which are well known to
these students. The research question to be addressed in this paper is the following:

e Are the students’ concept understanding schemes of (special) quadrangles
sufficient for solving problems in different situations like recognising equivalent
descriptions, finding counterexamples and distinguishing between sufficient and
necessary conditions?

For this research question we considered three items of a study which was carried out
for the investigation of informal prerequisites for informal proofs. In this study five
mathematical principles (definitions, equivalent descriptions, arguments and proof,
logical implication and counterexamples) were represented by ten items in a paper
and pencil test. This test was administered by a teacher in four classes of grade 8 in a
German Realschule (Realschule means lower secondary school for students with an
average proficiency level). Altogether the sample comprises of 106 students (50
female, 53 male, no data 3). The students were asked to answer the test in 45 minutes.
A detailed description of this study is given in Heinze (to appear).

The three items related to the research question are the following:

1. The recognition of equivalent descriptions of a square: Six descriptions of
quadrangles were given and the students had to mark which of them describe
squares (multiple choice).

2. The finding of a counterexample: We presented the following problem: “Klaus
considers squares and rectangles. He says: ‘In each quadrangle each angle is 90°.
Karin says: *This is not true’. How can you show, that Karin is right?”.
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3. The distinction between necessary and sufficient conditions: Here we asked: “If a
quadrangle is a rectangle, then the opposite sides are parallel. Consequently: If the
opposite sides of a quadrangle are parallel, then it is a rectangle. Is this true?”

RESULTS .
Table 1 shows the results of the first item (Which quadrangles are squares?):
Quadrangles with ... Frequency | Percentage
(a) | four sides of same length and all angles of 90° 88 83,0 %
(b) | four angles of 90 ° 48 45,3 %
(c) |three angles of 90° and two neighbouring sides of same 6 57%
length
(d) | all sides of same length 34 32,1 %
(e) | opposite sides are parallel 63 59,4 %
(f) | four sides of same length and one angle of 90° 19 17,1 %

Table 1: Correct answers for the recognition of a square as a special quadrangle

If we consider the alternative descriptions of a square (answers (a), (c) and (f)), we
see that 83 % of the students know that quadrangles with four sides of same length
and four angles of 90° are squares. Answer (f) (four sides of same length and one
right angle) is recognised by 17,1 % and statement (c) (three angles of 90° and two
neighbouring sides of same length) is accepted by only 5,7%. Conversely, more than
half of the students think that each quadrangle with four right angles is a square (b)
and more than two thirds believe that each equilateral quadrangle is a square (d). The
fact that, in general, a parallelogram is not a square (e) is known by nearly 60 % of
the students. It is interesting to see that about two thirds of the students think that an
equilateral quadrangle is a square (d) but only 17,1 % gave the answer that an
equilateral quadrangle with one angle of 90° is a square (f).

The total number of correct answers for each student is presented in Table 2:

corr. | Frequency | Percentage | Furthermore, if we consider only the correct
0 0 0% descriptions in the first item (answers (a), (¢)
1 21 19,8 % and (f)), then 71,7% of the students recognised
2 35 33,0 % one of these, 13,2% two and only 2,8% (three
3 34 32,1% students) recognised all three correct
4 15 14,2 % descriptions of a square among the six given
5 1 0,9% answers.
6 0 0% A deeper analysis of the students’ answers for

this first item shows that there is indeed a
certain ordering of the different descriptions
by difficulty: the easiest cases are (a), (¢) and

Table 2: Total number of correct
answers for each student
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(b) (in this ordering), i.e., students with three or more correct answers mostly have

these three cases correct.

Table 3 gives the results for the second item (In each quadrangle each angle is 90°):

Table 3: Results for the second item

Frequency |Percentage| More than 60 % of the students gave a correct
correct 68 64,2 % answer, nearly all of them gave a
false 22 20,7 % counterexample. About 20% gave a false
no response 16 15,1 % answer, half of these students said that it is

true that each angle in each quadrangle is 90°.

Table 4 presents the answers for the third item (necessary and sufficient condition):

Frequency | Percentage | About 37 % gave a right answer,
correct with reasons 2 1,9% whereby many students (28,3 %)
correct without reasons 8 7.5 % gave false reasons for their
correct with false reasons 30 28,3 % response. More than half of these
false 24 23,1 % cases with false reasons (16%)
no response 4?2 39,6 % was based on a partitional
Table 4: Results for the third item cla.ssﬂ'lcatlon of quadrapgles

(without  class  inclusions).

Typical answers were “The opposite sides of a square are also parallel, but a square is
not a rectangle.” In addition to this, we noticed that many students do not distinguish
between the concepts of square resp. rhombus and quadrangle. Furthermore, it is
remarkable that nearly 40 % of the students gave no (mathematical) response to this
item. Often they wrote, that this item is too complicated or that there is no logic in this
question.

DISCUSSION

For an interpretation of the described results it is necessary to analyse the different
items and their requirements. In particular, the six problems in the first item require
different kinds of thinking. For example, for the cases (c) and (f) it is not possible to
find a correct answer without an analytical process of thinking. For these cases we get
only a small number of correct answers which indicate that the students mainly did
not use analytical approaches. The results for the two cases (d) and (f) (Is an
equilateral quadrangle resp. equilateral quadrangle with one 90° angle a square?)
supports this fact: 61 students (57,5%) said that an equilateral quadrangle is a square
and an equilateral quadrangle with one 90° angle is not a square. The problems in
this case may be based on the students’ difficulties with sufficient and necessary
conditions and the understanding of the “mathematical language” (“one 90° angle”
means “only one 90° angle”).

Restrictions in the understanding of sufficient and necessary conditions and the
language resp. thinking in mathematics can be also identified in the third item (If the
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opposite sides of a quadrangle are parallel, then it is a rectangle). Though this item is
similar to case (e) in the first item, it is more difficult for the students (37,7% to
59,4% correct answers). This may be caused by the explicit question if the necessary

condition “opposite sides are parallel” of a rectangle is also sufficient. A fact that is

also influenced by deficits in mathematical language is the students’ preference of the
partitional classification of quadrangles. Nearly half of the answers which were
accepted as correct (16% of 37,7%) were based on this classification. The frequently
given reason “a square is not a rectangle” may also be caused by the interpretation of
the word “is” as “is equal to” (cf. de Villiers, 1994).

The best results the students obtained for the second item (“In each quadrangle each
angle is 90°.”). Here, about 64% gave a correct answer. Nevertheless, 15% of the
students gave no response and 20% gave a false response. For 12% of the students
with false response we identified a restricted concept image of quadrangles (In a
quadrangle each angle is 90°). As one can expect, these students also achieved poor
results for the other items.

The results show that many students have deficits in the concept understanding
schemes for the discussed quadrangles. In particular, if they have to use the concepts
for certain problems they remain on using their personal concept image and ignore the
concept definition. In addition, the findings support the results of de Villiers (1994)
that many students prefer a partitional classification for quadrangles. This seems to be
related to a wrong understanding of the mathematical language and thinking.

The difficulties described above are problematic in a stage where the teaching and
learning of reasoning and proof begins. In particular, the fact that in mathematics
classroom teachers and a part of the students have a different understanding of the
classification of concepts and of the mathematical language and thinking cannot be
considered as a basis for first steps in advanced mathematics. It is essential for a
successful instruction in advanced mathematics that teachers and students agree on a
common view on the basic mathematics.
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