ACTIVITY ANALYSES AT THE SERVICE OF TASK
DESIGN

Nurit Hadas & Rina Hershkowitz
The Weizmann Institute of Science, Rehovot, Israel

The goal of this paper is to exemplify a model of design-oriented research, based on
four different analyses of an inquiry activity, concerning proving in geometry. The
designers’ intention in this activity, was to create geometrical situations in which
students will confront contradictions between their conjectures and findings, face
uncertainties concerning the right conclusions, and thus search for explanations that
will settle the uncertainties. In this way normative explanations in geometry might
stem from students’ need for justification. The first two analyses reflect the beliefs,
hypotheses and intentions of the designer-researcher concerning the potential of
appropriate situations to lead to a meaningful activity. The third and the forth
analyses are experimental: students’ conjectures and explanations serve as the
database against which the task potential is validated.

INTRODUCTION

In this paper we exemplify a model of design oriented research, based on four
different analyses of an inquiry activity, concerning proving in geometry. This model
is based on the hypothesis, that it is possible to design geometrical inquiry situations,
in which students are confronted with contradictions between their conjectures and
the findings of their investigations in a Dynamic Geometry (DG) learning
environment. These contradictions might lead students to uncertainties concerning
the right conclusion, and thus push them to search for explanations, which may settle
the contradictions. Since the only satisfactory explanations for this kind of situation
are deductive (satisfactory in the sense that they can settle the mathematical
contradictions), students might naturally appeal to such explanations.

For investigating this hypothesis, a few inquiry activities were designed in a DG
environment in a process of design-research-design, as described in Hershkowitz et
al. (in press). The design of these activities, intended to lead students towards
contradictions in two ways, (see Figure 1).
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conclusions in two diiterent to a definite conclusion and — ¢onclusion, and
Ways. thus, create uncertainty. provides conviction.

Figure 1: Two ways to contradiction

Our approach to the design of meaningful ways for teaching/learning to prove in
geometry, is in agreement with the wide consensus of mathematics educators and
researchers that proving activity should involve different actions, like discovery and
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reinvention, conjecturing followed by confirmation or refutation, including
confrontation with situations of uncertainty (Chazan & Yerushalmy, 1998; Hoyles,
1997; Goldenberg, Cuoco & Mark, 1998; de Villiers, 1998).

THE TASK AND THE RESEARCH POPULATION

In this paper we will relate to one activity and exemplify the four analyses mentioned
above.

The task:

Divide the side AC of a dynamic triangle into 3 equal segments. Connect the division
points to the vertex B (Figure 2).

Make conjectures about the 3 varying angles (SABD, <DBE, and <EBC).

Use the software to decide when (if ever) the three angles are equal. You may
change your conjecture and check.

Describe your investigation and explain your conclusion.

Figure 2: The three angles task

The above task is the product of a first stage of the design-research-design process,
described in Hadas & Hershkowitz (1998), and has served as the “research tool” for
the model mentioned above, and which will be described in detail below. The task
was first used in semi-structured interviews with three pairs of students and then
given as a written activity to all students in three classes, which were invited to work
collaboratively in pairs. The students were all ninth graders, and had already had a
year-long course in Euclidean geometry. Altogether 32 reports were collected (three
from the interviews and 29 from the three classes in two different schools).

The interviews enabled us to qualitatively trace the changes in students’ conjecturing
and explanation processes. The transcriptions of the interviews and the written
reports of students working in pairs in classrooms were collected and analysed. The
results of these analyses enabled us to investigate quantitatively and qualitatively
students’ conjectures and explanations, and hence to clarify to what extent students
faced contradictions as well as to make categories of students’ explanations.

THE FOUR ANALYSES
Analysis no. 1: Epistemological analysis of the activity

The epistemological analysis demonstrates all possible investigation paths in the
designed activity, without giving preference to any of them. This analysis is
summarised in Figure 3.
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Figure 3: Diagram of the possible investigation paths

Starting with the conjecture in ellipse 1, ‘the three angles are always equal’, may
lead students towards experimentation, which refutes this conjecture. This path
exemplifies the first way of contradictions, (see Figure 1). After refuting this
conjecture students may omit the ‘always’, and join those who conjecture ‘equality
in special cases’ (ellipse 2). For checking this conjecture students may move from
example to example, checking with the software and refuting every new conjecture
concerning a special case in which equality seems possible (left and middle ‘bold
paths’). Thus, students are led to a situation of uncertainty where they don’t know
whether an example of equal angles exists. This may lead them either to raise a
different conjecture about equality or to the conjecture that ‘the three angles will
never be equal’ (ellipse 3) followed by an explanation (represented in the path on the
right side of Figure 1).

Analysis no. 2: Didactical characteristics of the activity

This analysis is based on the previous one, and reflects our intention as designers, to
create favourable conditions for contradictions and uncertainties. In this design we
took into consideration students’ common belief that opposite equal segments in a
triangle, there are equal angles, and the power of DG to check if there are ‘equal
angles situations’ (‘bold paths’ starting at ellipses 1 or 2 in Figure 3.) As the angles’
equality situation is impossible, it was hypothesise that students will confront
repeating refutations (‘bold middle path in Figure 3). Thus the investigation involves
uncertainty, namely not knowing whether one must look for an existence example or
for an explanation why such examples do not exist (ellipse 3). The role of the DG
software in this activity is not to provide an answer but to enable students to

v
'

A=)

—

PME26 2002



experiment (i.e. to manipulate geometrical entities involved, to refine their
conjectures, then to refute them). The DG environment may also influence students’
explanations.

The following third and fourth analyses describe the data concerning the students’
real actions (their ways of investigating the task), and study their meaning.

Analysis no. 3: Conjectures raised by students

Here we describe students’ initial conjectures and investigate to what extent they
contradict the findings. We also describe how these conjectures are changed during
the students’ work. The analysis of the conjectures is based on the first analysis of
the possible investigation paths (Analysis no. 1), and will be described here on the
basis of Figure 3.

From the 32 reports that were collected, we had altogether 35 conjectures (the
students in the three interviews conjectured individually).

Stage I: In 18 conjectures it was claimed that the three angles ‘would always be
equal’. The other 17 conjectures specified that the angles ‘would be equal in special
cases’ like in isosceles or at least in equilateral triangles. At this stage, no one raised
the conjecture, represented in ellipse 3, that ‘the three angles would never be equal’.
Constructing, measuring and dragging actions, using the software, immediately
refuted the conjecture in ellipse 1, and convinced the 18 students that the angles ‘are
not always equal’. After this conjecture was refuted these students joined the 17
others and dragged the figure, trying to find cases of equality. This first stage of
conjecturing is demonstrated in Figure 4 (Stage I).
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Figure 4: Stages I and II of conjecturing

Stage II: In 15 out of the 35 reports, after dragging the figure and measuring,
students moved towards the conjecture that ‘the angles will never be equal’. The

3.52 PME26 2002



remaining twenty moved in circles, from the search for examples to new conjecture.
This second stage of conjecturing is also demonstrated in Figure 4 (Stage II).

Stage III: This process, of moving in circles, continued until 19 of the pairs joined
the previous 15, in conjecturing that the three angles ‘might never be equal’ (ellipse
3). These 34 pairs of students began to search for a satisfactory explanation for the
impossibility. The 35™ pair removed vertex B so far from edge AC that the angles
became small and numerically equal on the computer. They then concluded that there
is a case for which the angles are equal. This Third stage of conjecturing is
demonstrated in Figure 5.

Stage 111
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20 15+19

Experimenting

19

Figure 5: Third stage of conjecturmg

In summary: All students began their work with conjectures, which contradict their
final conclusion. Following the stages demonstrated in Figures 4 & 5, we conclude
that all students choose investigation paths that lead to refutations and confrontation
with uncertainty, and thus acted out the didactical intention described in Analysis no.
2.

Analysis no. 4: Explanations

In the previous analysis we concluded that all but one of the pairs followed at some
stage the path starting in ellipse 3, which led them to search for an explanation why
the three angles will never be equal (see Figure 5). We collected 34 explanations,
which were categorised by the first author and two experienced teachers with
agreement among all three in 88% of the cases. When full agreement was not
attained, explanations were categorised according to agreement between two of
them.

The goal of the categorisation is to find qualitatively and quantitatively (1) whether
and how students use deductive considerations in their explanations; (2) whether and
how students are influenced by the DG environment in their explanations (whether
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they use examples created on the screen to explain the findings inductively, or
whether they make use of the dynamic variation of the figures on the screen, to
explain their findings). Thus, we defined five categories emphasising these aspects.

In the following we will first describe each of the five categories with examples.
(Examples from two other activities of the research are described in Hadas,
Hershkowitz & Schwarz, 2000.) Then some quantitative information, concerning the
number of explanations classified in each category will be given.

Categories of explanations

* No explanation

This category includes responses without any argument, and responses that were
mainly tautological (in which students rephrased their conclusion or the results
obtained on the screen).

Example 1: One pair explained why the three angles cannot be equal as follows:
Such a case cannot be obtained, as there is always something that messed it up.

* Inductive explanation

This category includes responses in which students based their explanations on one
or more examples. Sometimes students’ examples were taken from what appeared on
the screen and sometimes students drew their own examples on paper.

Example 2:

There is no possibility that the three angles will be equal because we checked with the
computer several triangles (equilateral, isosceles etc.)

* Partial deductive explanation

This category includes responses in which students constructed a chain of deductive
arguments but at least one link is missing or wrong.

Example 3:

There is no situation in which, the three angles will be equal because if there was one,
the four segments from B would be equal too (BA=BD=BE=BC), but this is impossible
since only two segments from B to line AC can be equal.

Students in this category constructed a short chain of deductive arguments. It is
partial because some arguments were neglected; for instance, they didn’t explain the
connection between their conclusion concerning the equality of the four segments
from B, and the assumption of the angles’ equality.

* Visual — variation explanation

In this category we include explanations in which students made use of visual
variation, as a result of the dragging action or of their imagery. As such this category
is typical for explanations in a DG environment.
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Example 4: After trying to find a case of equality for the three angles and concluding
that such a case doesn’t exist, one girl in an interview explained while dragging the
triangle on the screen:

1 thought that maybe if I drag B up and angle B will become small, the angles might be
equal, but then it [the figure] doesn’t look like a triangle anymore, it will be more like
a line. So it is impossible to get the 3 angles to be equal.

She accompanied her explanation with moving her hands up showing how the
triangle becomes thinner.

* Deductive explanation

In this category we include explanations that consist of a complete chain of logical
arguments.

Example 5:

Let us assume that the 3 angles are equal (see Figure 2 above). EC=ED and thus
ABDC is an isosceles triangle as the median and the angle bisector coincide. ABEA is
also isosceles as the median [BD] coincides with the angle bisector. Thus BE and BD
must both be altitudes and we have two different perpendicular segments from point B
to AC which is impossible.

The quantitative data (number of explanations and percentages in each category) are
given in Table 1. '

Table 1: Classification of students’ explanations

No . Inductive | ¥ artial. Visual-variation| Deductive | Total
explanation deductive
4 (12%) 8 (23%) 14 (41%) 4 (12%) 4 (12%) 34

It is important to note that: (1) The examples of partial deductive explanations
(Category 3), described here and in Hadas, Hershkowitz & Schwarz (2000)
demonstrate that in spite of the fact that these explanations do not comply with the
criteria for normative proofs, students tend to rely on their geometrical knowledge
and use deductive strategies to explain their conclusions. Thus, in eighteen out of the
34 explanations, students used deductive arguments (fourteen partial deductive
explanations and four deductive). (2) We found that twelve explanations were based
on experimenting with the DG software and resulted either in inductive
generalisation (eight explanations), or in a visual explanation based on the variations
of the figure caused by dragging (four explanations).

CONCLUDING REMARKS

This work exemplifies two issues: The first is the ‘four analyses model’ of design
oriented research, in which the planning work and the intentions of the designer are
the basis for experimental research, and the research findings concerning students’

PME26 2002 3-55



responses serve as the database against which this planning work and these
intentions are validated. The second issue relates to the specific content, in which the
model was demonstrated, namely proving in geometry. Through the four analyses of
the above model we demonstrated our approach to teaching/learning this
controversial topic.
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