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Abstract 
This panel draws on research of the teaching of mathematical proof, conducted in 
five countries at different levels of schooling. With a shared view of proof as 
essential to the teaching and learning of mathematics, the authors present results of 
studies that explore the challenges for teachers in helping students learn to reason in 
disciplined ways about mathematical claims.  
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1.  Introduction 

Proof is central to mathematics and as  such should be a key component of 
mathematics education. This emphasis can be justified not only because proof is at 
the heart of mathematical practice, but also because it is an essential tool for 
promoting mathematical understanding. 

This perspective is  not always unanimously accepted by either mathematicians 
or educators. There have been challenges to the status of proof in mathematics itself, 
including predictions of the ‘death of proof.’ Moreover, there has been a trend in 
many countries away from using proof in the classroom (for a survey see Hanna & 
Jahnke, 1996). 

In contrast to this, the authors of the present paper agree that proof must be 
central to mathematics teaching at all grades. Nevertheless, there are lessons to be 
learned from the debates over the role of proof. For many pupils, proof is just a 
ritual without meaning. This view is reinforced if they are required to write proofs 
according to a certain pattern or solely with symbols. Much mathematics teaching in 
the early grades focuses on arithmetic concepts, calculations, and algorithms, and, 
then, as they enter secondary school, pupils are suddenly required to understand and 
write proofs, mostly in geometry. Substantial empirical evidence shows that this 
curricular pattern is true in many countries. 

Needed is a culture of argumentation in the mathematics classroom from the 
primary grades up all the way through college. However, we need to know more 
about the difficulties pupils encounter when they are confronted with proof and the 
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challenges faced by teachers who seek to make argumentation central to the 
mathematics classroom. The epistemological difficulties that confront students in 
their first steps into proof can be compared to those faced by scientists in the course 
of developing a new theory. At the beginning, definitions do not exist.  It is not clear 
what has to be proved and what can be presupposed. These problems are 
interdependent, and researchers (like students) find themselves in danger of circular 
reasoning. In the infancy of a theory, a proof may serve more to test the credibility 
or the fruitfulness of an assumption than to establish the truth of a statement. Only 
later, when the theory has become mature (or the student has come to feel at home in 
a domain), can a proof play its mathematical function of transferring truth from 
assumptions to a theorem. 

All in all, work is needed in three areas with regard to the teaching of proof. We 
need (1) a more refined perception of the role and function of proof in mathematics, 
including studies of the practices of proving in which active mathematicians engage 
(epistemological analysis), (2) a deeper understanding of the gradual processes and 
complexities involved in learning to prove (empirical research) and (3) the 
development, implementation and evaluation of effective teaching strategies along 
with carefully designed learning environments that can foster the development of the 
ability to prove in a variety of levels as from the primary through secondary grades 
and up to college level (design research).  

We begin in Section 2 with an analysis of what mathematical proof might 
involve in the primary grades. Section 3 gives results of a longitudinal study on the 
development of proving abilities in grades 8 and 9. Section 4 is based upon an 
emp irical investigation of college level teaching and shows how the natural habit of 
referring to an example can be used as a leverage into the teaching of proof, and 
section 5 discusses the idea of ‘physical mathematics’ as an environment for the 
teaching of proof. 

2. What does it take to (teach to) reason in the 
primary grades? 

Although the teaching and learning of mathematical reasoning has often been 
seen as a focus only beginning in secondary school, calls for improvements in 
mathematics education in the U.S. have increasingly emphasized the importance of 
proof and reasoning from the earliest grades (NCTM, 2000, p. 56). While some may 
regard such a focus on reasoning and proof secondary to the main curricular goals in 
mathematics at this level, we consider reasoning to be a basic mathematical skill. 
Yet what might ‘mathematical reasoning’ look like with young children, and what 
might it take for teachers to systematically develop students’ capacity for such 
reasoning? These questions form one strand of our research on the teaching and 
learning of elementary school mathematics.    

We define ‘mathematical reasoning’ as a set of practices and norms that are 
collective, not merely individual or idiosyncratic, and that are rooted in the 
discipline (Ball & Bass, 2000, 2002; Hoover, in preparation). Mathematical 
reasoning can serve as an instrument of inquiry for discovering and exploring new 
ideas, a process that we call the reasoning of inquiry. Mathematical reasoning also 
functions centrally in justifying or proving mathematical claims, a process that we 
call the reasoning of justification .  It is this latter on which we focus here. 

The reasoning of justification in mathematics, as we see it, rests on two 
foundations. One foundation is an evolving body of public knowledge––the 
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mathematical ideas, procedures, methods, and terms that have already been defined 
and established within a given reasoning community.  This knowledge provides a 
point of departure, and is available for public use by members of that community in 
constructing mathematical claims and in seeking to justify those claims to others. 
For professional mathematicians, the base of public knowledge might consist of an 
axiom system for some mathematical structure simply admitted as given, plus a 
body of previously developed and publicly accepted knowledge derived from those 
axioms. Hence, the base of public mathematical knowledge defines the grain size of 
the logical steps which require no further warrant, that is acceptable within a given 
context.  The second foundation of mathematical reasoning is mathematical 
language—symbols, terms, notation, definitions, and representations—and rules of 
logic and syntax for their meaningful use in formulating claims and the networks of 
relationships used to justify them. ‘Language’ is used here to refer to the entire 
linguistic infrastructure that supports mathematical communication with its 
requirements for precision, clarity, and economy of expression. Language is 
essential for mathematical reasoning and for communicating about mathematical 
ideas, claims, explanations, and proofs. Some disagreements stem from divergent or 
unreconciled uses of terminology, whereas others are rooted in substantive and 
conflicting mathematical claims (Crumbaugh, 1998; Lampert, 1998). The ability to 
distinguish these requires sensitivity to the nature and role of language in 
mathematics. 

We have been tracing the development of mathematical reasoning in a class of 
Grade 3 students (ages 8 and 9) across an entire school year using detailed and 
extensive records of the class:  videotapes of the daily lessons, the students’ 
notebooks and tests, interviews with students, and the teacher’s plans and notes.    
By comparing the class’s work at different points in time, we are able to discern 
growth in the students’ skills of and dispositions toward reasoning. We offer two 
brief examples here.  Early in the school year, the teacher presented the problem, ‘I 
have pennies (one-cent coins), nickels, (five-cent coins), and dimes (ten-cent coins) 
in my pocket. Suppose I pull out two coins, what amounts of money might I have?’  
The children worked to find solutions to this problem:  2¢, 6¢, 10¢, 11¢, 15¢, and 
20¢.  The teacher asked the students whether they have found all the solutions to the 
problem, and how they know.  Some students seemed uncertain about the question. 
Other students offered explanations:  ‘If you keep picking up different coins, you 
will keep getting the same answers,’ ‘If you write down the answers and think about 
it some more until you have them all.’  The students believed they had found them 
all, but it was because they could not find any more. Their empirical reasoning 
satisfied them. Moreover, they had neither other ideas nor methods for building a 
logical argument which would allow them to prove that this problem (as worded) 
had exactly six solutions.  They also did not have the mathematical disposition to 
ask themselves about the completeness of their results when working on a problem 
with finitely many solutions. 

In contrast, consider an episode four months later.  Based on their work with 
simple addition problems, the third graders had developed conjectures about even 
and odd numbers (e.g., an odd number plus an odd number equals an even number). 
They generated long lists of examples for each conjecture:  3 + 5 = 8, 9 + 7 = 16, 9 + 
9 = 18, and so on.  Two girls, amidst this work, argued to their classmates:  ‘You 
can’t prove that Betsy’s conjecture (odd + odd = even) always works. Because, um,  
. . . numbers go on and on forever, and that means odd numbers and even numbers 
go on forever, so you couldn’t prove that all of them work.’  The other children 
became agitated and one of them pointed out that no other conclusion that the class 
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had reached had met this standard. Pointing to some posted mathematical ideas, the 
product of previous work, one girl questioned:  ‘We haven’t even tried them with all 
the numbers there is, so why do you say that those work? We haven’t tried those 
with all the numbers that there ever could be.’  And other children reported that they 
had found many examples, and this showed that the conjecture was true.  But some 
were worried:  One student pointed out that there are ‘some numbers you can’t even 
pronounce and some numbers you don’t even know are there.’ A day later, however, 
challenged by the two girls’ claim, the class arrived at a proof.  Representing an odd 
number as a number than can be grouped in twos with one left over, they were able 
to show that when you add two odd numbers, the two ones  left over would form a 
new group of two, forming an even sum: 

an odd number an odd number

plus

 

an even number  
Figure 1: odd + odd = even 

This episode illustrates the important role for definitions.  Having a shared 
definition for odd and even numbers enabled these young students to establish a 
logical argument, based on the structure of the numbers.  As one girl explained to 
her classmates:  ‘All odd numbers if you circle them by twos, there’s one left over, 
so if you . . . plus another odd number, then the two ones left over will group 
together, and it will make an even number.’  The definition equipped them to 
transcend the barrier that ‘numbers go on forever’ because it afforded them the 
capacity for quantification over an infinite set.  Moreover, this episode shows the 
students having developed in their ability to construct, inspect, and consider 
arguments using previously established public mathematical knowledge. 

Our research on the nature, structure, and development of mathematical 
reasoning has made plain that mathematical reasoning can be learned, and has 
highlighted the important role played by the teacher in developing this capacity.  
Three domains of work for the teacher have emerged from our analyses.  A first 
concerns the selection of mathematical tasks that create the need and opportunity for 
substantial mathematical reasoning.   The two-coin problem, for instance, did not 
originally require students to find all the solutions. Asking this transformed an 
ordinary problem into one that involved the need to reason mathematically about the 
solution space of the problem. The second domain of teachers’ work centers on 
making mathematical knowledge public and in scaffolding the use of mathematical 
language and knowledge. Making records of the mathematical work of the class 
(through student notebooks, public postings, etc.) is one avenue, for it helps to make 
that work public and available for collective development, scrutiny, and subsequent 
use.  This includes attention to where and in what ways knowledge is recorded, as 
well as how to name or refer to ideas, methods, problems, and solutions. Making 
mathematical knowledge and language public also requires moving individuals’ 
ideas into the collective discourse space. A third domain of work, then, concerns the 
establishment of a classroom culture permeated with serious interest in and respect 
for others’ mathematical ideas.  Deliberate attention is required for students to learn 
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to attend and respond to, as well as use, others’ solutions or proposals, as a means of 
strengthening their own understanding and the subsequent contributions they can 
make to the class’s work. 

Acknowledgement. The work reported here draws on my research with Hyman 
Bass, Mark Hoover, Jennifer Lewis, and Ed Wall, as part of the Mathematics 
Teaching and Learning to Teach Project at the University of Michigan. This 
research has been supported, in part, by grants from the Spencer Foundation and the 
National Science Foundation. 

3. The complexity of learning to prove 
deductively 

Deductive mathematical proof offers human beings the purest form of 
distinguishing right from wrong; it seems so transparently straightforward – yet it is 
surprisingly difficult for students.  Proof relies on a range of ‘habits of mind’ – 
looking for structures and invariants, identifying assumptions, organising logical 
arguments – each of which, individually, is by no means trivial.  Additionally these 
processes have to be coordinated with visual or empirical evidence and 
mathematical results and facts, and are influenced by intuition and belief, by 
perceptions of authority and personal conviction, and by the social norms that 
regulate what is required to communicate a proof in any particular situation (see for 
example, Clements & Battista, (1992), Hoyles, (1997), Healy, & Hoyles, (2000).  

The failure of traditional geometry teaching in schools stemmed at least partly 
from a lack of recognition of this complexity underlying proof: the standard practice 
was simply to present formal deductive proof (often in a ritualised two-column 
format) without regard to its function or how it might connect with students’ 
intuitions of what might be a convincing argument: ‘deductivity was not taught as 
reinvention, as Socrates did, but [that it] was imposed on the learner’ (Freudenthal, 
1973, p.402). Proving should be part of the problem solving process with students 
able to mix deduction and experiment, tinker with ideas, shift between 
representations, conduct thought experiments, sketch and transform diagrams.  But 
what are the main obstacles to achieving this flexible habit of mind? 

I present here some examples of geometrical questions that have turned out to 
be surprisingly difficult – even for high- attaining and motivated students.  The 
analysis forms part of The Longitudinal Proof Project (Hoyles and Küchemann: 
http://www.ioe.ac.uk/proof/), which is analysing students’ learning trajectories in 
mathematical reasoning over time. Data are collected through annual surveying of 
high-attaining students from randomly selected schools within nine geographically 
diverse English regions. Initially 3000 students  (Year 8, age 13) from 63 schools 
were tested in 2000.  The same students were tested again in the summer of 2001 
using a new test that included some questions from the previous test together with 
some new or slightly modified questions. The same students will be tested again in 
June 2002 with the similar aims of testing understandings and development. 

Question G1 in both Year 8 and Year 9 (see Fig 1), is concerned with how far 
students use geometrical reasoning to make decisions in geometry and how far they 
simply argue from the basis of perception or what ‘it looks like’ (see Lehrer and 
Chazan, 1998; Harel and Sowder, 1998).  In both cases a geometric diagram is 
presented, which in the particular case shown, lends support to a conjecture that 
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turns out to be false. Students are asked whether or not they agree with the 
conjecture and to explain their decision. 

Darren sketches a circle. He then draws a quadrilateral He then draws the diagonals

He calls the centre C. PQRS, whose corners lie on of the quadrilateral.
the circle.

Darren says
“Whatever quadrilateral I draw with corners on a circle,

  the diagonals will always cross at the centre of the circle”.

Is Darren right? .........

Explain your answer.

C

P
Q

R
S

C

P
Q

R
S

C

 

Tim notices that one of the diagonals has cut the area of the quadrilateral in half.

He says
“Whatever quadrilateral I draw,

at least one of the diagonals will always cut the area of the quadrilateral in half”.

Is Tim right? .........

Explain your answer.

P

Q

R

S

P

Q

R

S

Tim sketches a quadrilateral. He draws the diagonals of the quadrilateral.

 
Figure 2: Question Y8G1 (top) and Y9G1: Distinguishing perceptual from 

geometrical reasoning 

Responses to question G1 were coded into 6 broad categories. Surprisingly, a 
large number of students in both years simply answered on the basis of perception 
and agreed with the false conjecture with no evidence of progress over the year(Yr 
8: 40 %, Yr 9: 48%). Additionally 41% in Yr 8 could come up with a correct answer 
and explain this by reference to an explicit counter-example while only 28% could 
do this in Yr 9.   

Further analysis, however, is thought-provoking.  Responses to Yr8G1 showed 
evidence of three effective strategies: the first to find the most extreme case that 
obviously shows that the diagonals cannot cross at the centre of the circle; the 
second to use dynamic reasoning, that is perturbate the diagram in an incremental 
way, keeping the given properties invariant (e.g., moving one of the vertices round 
the circumference so the intersection of the diagonals can no longer be at the centre), 
the third is to focus on the diagonals rather than the quadrilateral and simply to say 'I 
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can find opposite vertices such that the diagonals do not go thru the centre' also 
evidenced by students who simply drew a diagonals 'cross' without bothering to 
draw the quadrilateral itself!  In answer to Yr9G1, it is harder to find a counter 
example in a static way as two conditions have to be controlled (neither diagonal can 
bisect the area) rather than only one (one diagonal must not go thru centre); also it is 
not possible to find as 'extreme' a counter example as in Y8 (the nearest equivalent is 
a concave quadrilateral, though here it is still possible to end up with two triangles 
that look very different but have roughly the same area).  The second strategy is also 
harder in the Year 9 question as the dynamic reasoning has to change an area, not an 
immediately obvious quantity unlike the coincidence of two points.  Clearly 
avoiding the seduction of perception is only one pitfall in geometrical reasoning.   

We also found that while students did not easily learn over time to reject 
perception, they did improve in calculation. Both Yr 8 and Yr 9 surveys included a 
question that required knowledge of certain angle facts (angle on a straight line or at 
a point, interior angle sum of triangle; angle property of isosceles triangle) and 
where a 3-step calculation had to be performed to find the size of an angle. We 
deliberately restricted the task to working with specific numerical values rather than 
asking students to derive a general relationship as would be required in a standard 
geometric proof, as this would simply be too hard for our students who have little 
experience of proving.  

First, we note that students made considerable progress in their performance on 
the calculation part of the question (from 54% correin Yr 8 to 73% in Yr 9). But on 
analysing responses to the Yr 9 question, (see Figure 2), where we had asked 
students to give reasons for each step of their calculation, we discovered that not 
only did they find it hard to match a step in the calculation to a reason but also they 
were confused by what it means to give a reason. Many students interpreted 
‘reasons’ in ways that we did not anticipate: that is, as an explanation for the step 
that they had taken(‘u is 40 as I took 40 from 360’), or as request to make their plans 
explicit (‘I started with p= 320 as the only thing that I know and I took it  from 360 
to find u’). 

Our research is uncovering many more surprises in both student response and 
progress in proving - in geometry but also in algebra (One of our questions (for 14 
year-olds) concerns the sum of odd numbers and shows a remarkably similar spread 
of responses as those described by Deborah Ball for children age 8/9 years. We 
know now even more about potential obstacles to ‘learning the mathematical game’; 
but need more systematic work on progress over time. there are no fool-proof 
approaches  and no short cuts or easy solutions. 

Acknowledgement. I acknowledge the contribution of Dietmar Küchemann in 
all the research reported here supported by the Economic and Social Research 
Council (ESRC), Project number R000237777. 

4. The ‘Because for example…’ phenomenon, or 
transparent pseudo-proofs revisited 

This panel is about the teaching of proof in mathematics, or as I interpret it - 
providing adequate conditions for gaining mathematics knowledge. My presentation 
is based upon the assumption that mathematics knowledge is in principle not 
different than any other kind of knowledge, although, of course, the nature of the 
discipline is different. What, then, is knowledge? According to Brook and Stainton 
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(2001), a common, long standing and most plausible answer, given by philosophers 
to this question, is that in order to be one’s knowledge a proposition must comply 
with three necessary (albeit not sufficient) conditions:  

(i) It must be true.  
(ii) One must believe it. And  
(iii) One must have justification for believing it.  

Hanna and Jahnke (1993) suggest that in particular for a novice, a preliminary 
step towards appreciating what it is that is being justified, illumination - namely 
understanding and believing, is of maximum importance. Bertrand Russell makes an 
important distinction: Minds do not create truth or falsehood. They create beliefs. 
What makes a belief true is its correspondence to a fact, and this fact does not in any 
way involve the mind of the person who holds the belief. This correspondence 
ensures truth, and its absence entails falsehood. ‘Hence we account simultaneously 
for the two facts that beliefs (a) depend on minds for their existence, (b) do not 
depend on minds for their truth….’ (Russell, 1912).  

We conclude that for a true mathematical statement, i.e., a theorem, to become 
one’s mathematics knowledge, the learning environment must consist of teaching 
tools and strategies that support the development of two properties: (a) One’s belief 
in its truth; and (b) one’s ability to justify this belief, that is an ability not just to 
formally prove it, but also to ensure its truth by pointing out its correspondence to 
facts. Said differently, given a statement p of a mathematical theorem, a learner 
should be able to relate to two basic questions: (a) ‘Do you believe that p?’ and, 
provided the learner’s answer to (a) is yes, (b)’Why do you believe that p?’ 

Quite often students’ reply to the earlier question is of the form: ‘Yes, because 
for example…’. Very seldom do the examples that follow, reflect full ability to 
verify the truth or even a partial understanding of it.   For example, ‘Yes, the sum of 
every two even integers is an even integer, because for example 6 plus 8 is 14’, does 
not reflect any insight into the general case, although it does attest to an 
understanding of the statement, (which cannot be said about the reply: ‘Yes, for 
example, because 14 is the sum of 6 and 8’!)  The answer: ‘Yes, because for example 
6, which is 2x3, plus 8, which is 2x4, give 14, which is 2x7’, is slightly better but 
not quite. It ties the belief to some acquaintance with the property of evenness. 
Although it may be based on deep understanding, it does not exhibit more than 
accepting the general claim as true, possibly due to a message from an external 
authority. (See also Mason 2001, about warrants and the origins of authority.) To be 
counted as ‘satisfactory’ the answer should be something like: ‘Yes, because for 
example 6, which is 2x3, plus 8, which is 2x4, give 2x(3+4) and this IS an even 
number, as it is a multiple of 2.’ This latter one illustrates what we named a 
transparent pseudo-proof.  

A transparent proof, is  a proof of a particular case which is ‘small enough to 
serve as a concrete example, yet large enough to be considered a non-specific 
representative of the general case. One can see the general proof through it because 
nothing specific to the case enters the proof.’ Because a transparent proof is not a 
completely polished proof, this kind of ‘proof’ was later re -named Transparent 
Pseudo-Proof or as abbreviated: Transparent P-Proof. (Movshovitz-Hadar, 1988, 
1998). 

The delicate pedagogy involved in preparing a transparent p-proof was the 
focus of my ICME-8 Seville presentation (Movshovitz-Hadar 1998). That paper 
presents the lessons learned through experimental emp loyment of two slightly 
different pseudo-proofs, both of them deserving the title ‘P-Proof Without Words’, 
yet only one of which - ‘transparent’. The 1998 Samose presentation (ibid) included 
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further insight into the notion of transparent p-proof, gained through the preparation 
of transparent p-proofs as pedagogical tools to be used in first year linear algebra 
course, at Technion - Israel Institute of Technology.  

The study of the impact of using transparent p-proofs went on for four years, 
and yielded interesting results (Malek, in preparation). Numerous personal 
interviews of first-year mathematics majors and engineering students taking a linear 
algebra course, with exposure to transparent p-proofs, yielded clear evidence as to 
the impact of reading a transparent p-proof, on undergraduate students’ ability to 
write, immediately afterwards, a formal proof of the same claim. A continuing 
follow-up also yielded comprehensive evidence as to the impact of reading 
transparent p-proofs, on the (passive) ability to read and comprehend general 
(formal) proofs, and most important of all, on the (active) ability to compose general 
proofs and write them in a coherent style. 

Consequently, we now strongly advocate, wherever it is appropriate, the use of 
transparent p-proofs as a pedagogical tool, as it was shown to support both the 
development of one’s belief in the truth of mathematical statements and of one’s 
ability to justify this belief. However, it cannot be overemphasized that extreme care 
must be taken by the instructor in constructing this tool, be it in verbal-symbolic 
presentation or in visual-pictorial representation, so that the presentation is indeed of 
a transparent proof, namely, it does not hang in any way to the specifics of the 
particular case and hence is readily generalizable. The success of the resulting 
learning environment in yielding the development of the ability to prove, depends 
heavily on elaborate and careful preparation of the tools by the instructor. 

Acknowledgement. The research work reported here was carried by Aliza Malek 
under my supervision, and was supported by Technion R&D funds.  

5. Arguments from physics in mathematical 
proofs 

Mathematicians often use arguments from physics in mathematical proofs. 
Some examples, such as the Dirichlet principle in the variational calculus or 
Archimedes’ use of the law of the lever for determining the volumes of solids, have 
become famous, and have in fact been regarded by the best mathematicians as 
elegant proofs, if not necessarily rigorous. It is only natural, then, that several 
authors, notably Polya (1954) and Winter (1978), have proposed that arguments 
from physics could and should be used in teaching school mathematics. Besides 
these publications there are a number of other papers and booklets with examples 
(see, for example, Tokieda, 1998). Unfortunately, however, this approach to 
classroom teaching has not been sufficiently explored. 

The application of physics under discussion goes well beyond the simple 
physical representation of mathematical concepts, and it is also distinct from 
drawing general mathematical conclusions by the exploration of a large number of 
instances. Rather, this approach amounts to using a principle of physics, such as the 
uniqueness of the centre of gravity, in a proof and treating it as if it were an axiom 
or a theorem of mathematics. 

Let us look at a typical example. The so-called Varignon theorem states that, 
given an arbitrary quadrangle ABCD, the midpoints of its sides W, X, Y, Z form a 
parallelogram (see figure 3 below). A purely geometrical proof of this result would 
divide the quadrangle into two triangles and apply a similarity argument. 
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Figure 3: Varignon’s theorem 

An argument from mechanics, on the other hand, would consider points A, B, C, 
D as four weights, each of unit mass, connected by rigid but weightless rods. Such a 
system, with a total mass of 4, has a centre of gravity, and it is this which we need to 
determine. The two sub-systems AB and CD each have weight 2, and their 
respective centres of gravity are their midpoints W and Y. Thus, we may replace AB 
and CD by W and Y loaded with mass 2. Since AB and CD make up the whole 
system ABCD, its centre of gravity is the midpoint M of WY. In the same way we 
can consider ABCD as made up of BC and DA and its centre of gravity must also be 
the midpoint of XZ. Since the centre of gravity is unique, this midpoint must be M. 
This means that M cuts both WY and XZ into equal parts. Thus WXYZ, whose 
diagonals are  WY and XZ, is a parallelogram. 

The example shows that an argument from physics may  
o provide a more elegant proof 
o reveal the essential features of a complex mathema tical 

structure 
o point out more clearly the relevance of a theorem to other 

areas of mathematics or to other scientific disciplines 
o help create a ‘holistic’ version of a proof, one that can be 

grasped in its entirety, as opposed to an elaborate mathematical 
argument hard to survey. 

Frequently, an argument from physics helps to generalize and to arrive at new 
theorems. Following the lines of our previous argument, for example, we can 
determine the centre of gravity not only for systems with four masses, but also for 
those with three, five, six, and so forth. We can also consider three-dimensional 
configurations and investigate whether we are able to translate the respective 
statements about the centre of gravity into a purely geometrical theorem. 

There are several reasons why this approach to the teaching of proof should be 
further developed and tested. First, it is unquestionable that, worldwide, we need 
fresh and possibly more attractive approaches to the teaching of proof. Since using 
arguments from physics in a proof is an alternative to the established Euclidean 
routine it might be helpful in motivating teachers to rethink their attitude to proof. 

Another reason is that present-day mathematical practice displays a significant 
emphasis on experimentation, and it is only right that this be reflected in the 
classroom by a similar emphasis on experimental mathematics. But it would be 
dangerous from an educational point of view if experimental mathematics were to be 
represented in the schools only by ‘mathematics with computers.’ Quite to the 
contrary: under the heading of experimental mathematics, the curriculum should 
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include a strong component devoted to the classical applications of mathematics to 
the physical world. In cultivating this type of mathematics, students and teachers 
should be guided by the question of how mathematics helps to explore and 
understand the world around us. In this way, the teaching of proof would be 
embedded in activities of building models, inventing arguments to the question  
‘why’, the study of consequences from assumptions. Working on the border between 
mathematics and physics, it could be shown that in quite a few cases we cannot only 
apply mathematics to physics, but, vice versa, can use statements from physics for 
the derivation of mathematical theorems. 

A Canadian and a German group (Gila Hanna, University of Toronto, Hans 
Niels Jahnke, Universität Essen) study the potentials and pitfalls of this approach in 
Canadian and German classrooms. Questions investigated concern the feasibility 
and the acceptance of the approach, given the limited knowledge of physics with 
students in both countries. It is also asked whether this approach furthers the general 
understanding of proof and whether the students are aware of the difference between 
using arguments from physics and the purely empirical appeal to a large number of 
instances (Hanna&Jahnke, 2002). 
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