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Observation and design in mathematical proofs 

 

Willi Dörfler 

Institut für Mathematik, Universität Klagenfurt, Austria 

Introduction 

This contribution is located in the context of the philosophy of mathematics by 
the American philosopher and pragmatist Ch. S. Peirce. Yet, it is readable and 
understandable without a detailed knowledge of the stance taken by Peirce. The 
interested reader might consult the papers Dörfler (2003a, 2003b) or Hoffmann 
(2001, 2002). This especially holds for the notion of diagram and diagrammatic 
reasoning which were introduced by Peirce to explain, on the one hand, the 
stringency of mathematical proofs and, on the other hand, the possibility of in-
ventions and constructions in mathematics, or what he calls "surprising observa-
tions". Thus he says (in Peirce, Collected Papers 3.363): 

It has long been a puzzle how it could be that, on the one hand, mathematics is purely deduc-
tive in its nature, and draws its conclusions apodictically, while on the other hand, it presents 
as rich and apparently unending a series of surprising discoveries as any observational sci-
ence. Various have been the attempts to solve the paradox by breaking down one or other of 
these assertions, but without success. The truth, however, appears to be that all deductive rea-
soning, even simple syllogism, involves an element of observation; namely, deduction con-
sists in constructing an icon or diagram the relations of whose parts shall present a complete 
analogy with those of the parts of the object of reasoning, of experimenting upon this image in 
the imagination, and of observing the result so as to discover unnoticed and hidden relations 
among the parts. ... As for algebra, the very idea of the art is that it presents formulae, which 
can be manipulated and that by observing the effects of such manipulation we find properties 
not to be otherwise discerned. In such manipulation, we are guided by previous discoveries, 
which are embodied in general formulae. These are patterns, which we have the right to imi-
tate in our procedure, and are the icons par excellence of algebra. 

From this it already comes clear that a diagram might be of a great variety: 
geometric figures and algebraic expressions as well. For short, diagrams in 
Peirce are special (iconic) signs which have a clearly defined and recognizable 
structure and which can be manipulated according to (conventional) rules for 
transformations and compositions, cf. again the above mentioned papers. The 
crux of all that is that empirical and perceptive observation becomes a decisive 
part of mathematical reasoning, of devising and understanding proofs and 
mathematical arguments. Mathematical reasoning in this view is not so much the 
handling of abstract ideas in one's mind but the observation of the effects of 
one's manipulations of diagrams. The mathematical ideas rather reside in the 
invention of diagrams and of their fruitful manipulations, transformations, com-
positions. Mathematics in this sense studies the general properties and regulari-



ties of certain diagrams and of the operations with them. In accordance with the 
triadic sign concept of Peirce those diagrams will be interpreted by their users in 
many different ways and will be related to "objects" (in the sense of Peirce) also 
in various ways. In a way, I am analysing here only the sign aspect (representa-
men) of that Peircean triad "sign, object, interpretant" but apparently this for 
mathematics is of crucial importance. 

From diagrammatic reasoning derives also the absolute reliability and security 
of mathematics, its so-called logical necessity. This differentiates observation of 
diagrams also from empirical observation in the natural sciences. Diagrammatic 
observation "sees" that a certain relationship will hold in all conceivable in-
stances of the respective type of diagrams. This is enabled by the generic charac-
ter of the (mathematical) diagrams: each single instance or token fully presents 
the respective type according to an adequate perspective on the token. Like, say, 
any inscription of the letter "a" presents that letter (as a type of inscriptions un-
der a certain perspective). Finally, it should be emphasized that diagrammatic 
reasoning is very much different from algorithmic calculations. Though it is rule 
based it needs creativity and inventiveness like composing music. 

Observing Diagrams 

In this section I will present some examples which hopefully offer to the reader 
the experience that mathematical proofs in many cases depend on the observa-
tion of structural relationships and regularities within transformations of dia-
grams. Other examples can be found in Dörfler (2003a). In all examples the re-
sults of previous "experiments" with diagrams are used as established formulae 
or "theorems". 

There is the surprising result of: 11x11=121, 111x111=12321, 1111x 
1111=1234321 etc. This can be "explained" by observing a diagram like: 

 
1 1 1 1 1 1 1 x 1 1 1 1 1 1 1 

1 1 1 1 1 1 1         

 1 1 1 1 1 1 1        

  1 1 1 1 1 1 1       

   1 1 1 1 1 1 1      

    1 1 1 1 1 1 1     

     1 1 1 1 1 1 1    

      1 1 1 1 1 1 1   

1 2 3 4 5 6 7 6 5 4 3 2 1   

 



One of the rules used here is the decimal multiplication algorithm which in itself 
does not predict the observed relationships in the above diagrams. The "under-
standing" of the surprising results derives from recognizing the pattern of 1's 
which is produced by the algorithm. The usual common interpretation of the 
symbols might be helpful but the essential point consists in the perceptive ob-
servation of the outcome of one's operations on the diagrams. These would hold 
even if there were no interpretation of the symbols as numbers. A precondition 
for this diagrammatic reasoning clearly will be a close familiarity with the dia-
grams and proficiency in their operations. This possibly sheds new light on the 
role of "calculations" conceived in a wider sense as intelligent and creative op-
erations with diagrams. Based on these first observations there is a rich space of 
further diagrammatic experiments and thought experiments with those diagrams. 
There is also the possibility of changing the diagrammatic rules, e.g. by choos-
ing different bases for the place value system. 

Also the next example – as the others as well – is well known and only serves 
the purpose of orienting the attention of the reader to the role of perception, ob-
servation, pattern recognition and manipulation of concrete inscriptions as a 
constitutive part of mathematical thinking. 

The young Gauss is reported to have found the sum of the first 100 positive in-
tegers by thinking of those numbers as being written down in the following way 

 

1 2 3 4 … 49 50 

100 99 98 97 … 52 51 

 

and adding the two numbers in each of the 50 columns to get 505010150 =×  as 
the required sum. This is very similar to our first example: a certain recognized 
pattern in a diagram gives the result. Here the generic character (for even num-
bers) can be seen: a thought experiment with the respective diagram gives the 
formula ( ) ( )( )12/ +nxn . Further experiments with those diagrams will lead to 
another more general diagram for arbitrary n , like the following: 
 

1 2 3 4 5 6 7 

7 6 5 4 3 2 1 

 

I do not deny that an understanding of the involved symbols as natural numbers 
is helpful or even necessary for recognizing the relevant pattern. But for the lat-
ter a certain regularity, namely constant sum in the columns, is most important, 
and that is not inherently related to natural numbers. Thus, the diagram is added 
to the known properties of natural numbers and enlarges the knowledge about 
them. In a similar way one can analyze many other number patterns like triangu-



lar, square, rectangular numbers. In all cases besides symbolic presentations 
graphic ones using arrays of dots is another kind of diagrammatic reasoning 
based on experiments with and observation of diagrammatic structures. To that 
already point names like "triangular", "square" or "rectangular". 

Within Linear Algebra there is a wealth of examples for diagrammatic reason-
ing. The basic diagrams there are matrices and their operations. Consider 

( )ijaA =  an ( ) matrix-nm × and ( )ja=α  an ( ) matrix -1×n (vector). Then the 
th-i  component of the product αA  is  

 

ninii aaaaaa +++ L2211  

 

or more detailed the vector ( )ibA =α  is given as: 
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An empirical investigation of this diagram exhibits a column-wise regularity 
which can be expressed as 

 

nnaaaA αααα +++= L2211  
 

where ( )ijj a=α  is the th-j column-vector of A. This is a result which is a 
stringent consequence of the operation rules for matrices and the diagram above 
cannot be doubted, it is an apodictic argument though (or possibly because of) 
being based on "pattern recognition".  

Once such a "pattern" is established as a formula or theorem it can fruitfully be 
used to derive further consequences. Assuming α  to be the th-i  unit vector 

( ) niaija iji ,,1,1,for  0 K==≠=ε , leads to iiA αε =  which of course can be 
recognized from other diagrams also. Here it becomes even more prominent that 
the important thing are the operational rules and not so much the (referential) 
meaning of the symbols manipulated. We only use our knowledge how to oper-
ate with the symbols. But still it is not a meaningless, purely formalistic game: 
we discover surprising and fascinating relationships for the diagrams. Thus dia-
grams play here manifold roles. They are, on the one hand, the objects of 
reasoning properties of which are detected and described (by new diagrams). On 



the other hand, diagrams are the means for mathematical reasoning by which 
relationships and regularities become observable patterns. 

As another example we study one of the proofs of Cramer's rule for the solution 
of a regular square system of linear equations ( )ijaAbAx == ;  an nxn  matrix, 

( )ixx =  the solution vector, ( )ibb =  the right-side vector. Then by assumption 
the inverse 1−A  (with == −− AAAA 11  identity matrix) exists and from previous 
diagrammatic operations one knows that ( )||/1 AAA ji=−  where || A  is the de-

terminant, and jiA  is the cofactor of jia  in A. Then bAx 1−=  and therefore 
 

( )( )nniiii bAbAbAAx +++= K2211||/1  
 

Now nniii bAbAbA +++ K2211  is observed to be the result of expanding the de-
terminant of the following matrix iA  by the th-i  column  
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since jiA  is just the appropriate cofactor resulting from deleting the th-j  line 
and th-i  column in iA  or equivalently in A. Thus ||/|| AAx ii = . This clearly is 
recognized by observing invariant patterns when carrying out diagrammatic op-
erations or experiments. For the latter, intimate experience with those diagrams 
and their previously observed properties is indispensable. Of course, several ex-
perimental trials with the diagrams will be necessary before a useful pattern will 
be discovered. In any case it is scrutinizing the diagrams which is at the core of 
"inventing" the proof. In the hindsight, this might then be presented as the "idea 
of the proof". We should therefore not expect our students at any level to be able 
to independently produce proofs without preceding intensive work on the re-
spective diagrams. The reader might interpret this for instance in the case of 
(Euclidean) geometric proofs. The reader is also encouraged to have a look in a 
standard text-book on Linear Algebra and to read some of the proofs under the 
pretext of diagrammatic reasoning. He/she will observe again and again the im-
portance of observing and recognizing patterns of relationships in the produced 
diagrams which are constitutive for the respective proof. Instructive examples 
are: row rank equals column rank; matrix of a linear transformation; basis 
change for linear transformations. But of course already the basic properties of 
the matrix operations are good examples for diagrammatic reasoning. 



Reading a finished (diagrammatic) proof demands first of all proficiency in re-
cognizing patterns in diagrams. Devising a proof mostly is based on inventing 
new diagrams or parts of them. This becomes most clear in geometric proofs in 
the form of auxiliary lines and figures. Here I will refrain from studying geomet-
ric proofs because the diagrammaticity of mathematical reasoning might be 
more unexpected in other fields. For calculus see Dörfler (2003a). 

As another example for a crucial invention I take the standard proof of the 

Cauchy-Schwarz-Inequality for an inner-product ( ) ( ) ( )ααβαβα ,, i.e. ,, 2 ≤  
( )ββ , . One invents a new diagram ( )βαβα xx ++ , , x  real number, and then 

observes the transformation: ( ) ( ) ( ) ( )βββαααβαβα ,,2,,0 2xxxx ++=++≤  
which is using the conventional properties of the inner-product. From diagram-
matic reasoning with quadratic polynomials one now knows that 042 ≤− acb  if 

02 ≥++ cbxax  for all x . And this gives for the above diagram  

( ) ( )( ) 0,,4,4 2 ≤− ββααβα  

which is the desired inequality.  

Clearly, this kind of diagrammatic reasoning presupposes intimate acquaintance 
with the handling of symbols and with ascribing generality to the respective ex-
pressions. But still the diagrammatic operations and their observation adds to all 
this and constitutes the core of the proof, its stringency and security. Thus, 
mathematics cannot be reduced to diagrammatic reasoning but the latter is an 
essential component of its specific quality and character. Specifically, having at 
hand a great inventory of diagrams, diagrammatic relationships and operations is 
a precondition for mathematical inventiveness and productive ideas. The latter 
very often are rich and productive diagrams of some sort. Take as an example 
the Pascal triangle in Combinatorics or possibly simple number relations in the 
context of developing number sense. 

Design 

In this section I will present examples for a specific type of proof. It is those 
proofs which consist in the purposeful design or construction of a certain kind of 
diagrams or in the proof of the possibility of such a construction. In a sense, 
those are constructive existence proofs by exhibiting diagrams with the desired 
property or properties. A simple example is the proof that between any two frac-
tions nm /  and qp /  there is another one: Assuming qpnm // <  we find 

npmq <  because of nqnpnqmq // < . Then for any k  between mq2  and np2  
the fraction nqk 2/  will be a required fraction. Or, the Euclidean proof that for 
any given set of prime numbers we can find one not in this set is also of that 
kind. 

The next example on the first glance does not give the impression that in essence 
it is the design of diagrams which is at the centre of the proof of the theorem. It 



is the well-known theorem by Kronecker about the existence of roots for poly-
nomials. More technically the theorem reads as follows. For any polynomial 

( )xP  over a field F  (i.e. the coefficients of P  are elements of F ) there is an 
extension-field 1F  of F  where P  has a root (i.e. in 1F  there is an element r  
with ( ) 0=rP  over 1F ). Thereby one can assume additionally that P  is irreduci-
ble over F  (i.e. P  is not the product of two polynomials over F  each of degree 
1 at least). The proof starts by considering the ring ( )xF  of all polynomials over 
F  which can be considered to be a class of diagrams in the sense used here. 
Then the general construction of the field ( ) ( ),/ xPxF  of ( ) ( )xPxF  modulo , is 
employed which can be introduced as consisting of all equivalence classes of 

( ) ( )xPxF  modulo . Thereby ( )Ppp 21 =  if  21 pp −  is a multiple of P  in ( )xF . 
Denoting by [ ]p  the class of ( )xFp∈  the field operations on the classes are 
given by [ ] [ ] [ ]2121 pppp +=+  and [ ] [ ] [ ]2121 xpppxp = . The latter definitions 
have diagrammatic character but the notion of an equivalence class itself is  not 
of a diagrammatic quality. Yet, the whole "construction" can be described easily 
in a diagrammatic view. In each class of ( ) ( )xPxF /  there is a unique polyno-
mial p  of degree less than the degree of P . If n  is the degree of P  then 

( ) ( )xPxF /  can be viewed as the set of all polynomials 1
110

−
−++ n

n xaxaa K  
over F  with the usual addition and a certain multiplication. The latter results 
from 21xpp  (polynomial product) by reduction modulo P , i.e. it is the remain-
der of the division of 21xpp  by P . By various diagrammatic manipulations one 
demonstrates that those operations for those diagrams satisfy all the properties 
of a field. The field F  clearly is contained in the new field ( ) ( )xPxFF /1 =  and 
thus P  can be viewed as being a polynomial over 1F . Among all the diagrams 
of 1F  there is the special diagram x (i.e. we have 0120 ==== −naaa K  and 

11 =a ), and for this diagram we find according to the diagrammatic rules of 1F  
that ( ) 0=xP  in 1F  since ( ) ( ) 01 +⋅= xPxP , i.e. 0 (the zero polynomial in 1F ) is 
the remainder when dividing P  by P . But this is just the same as saying that x  
is a root of P  in 1F . To summarize: the proof can be interpreted in a diagram-
matic way as the design of a class 1F  of diagrams containing the elements of F  
for which a sum and a product can be defined such that 1F  is an extension field 
of F ; and in 1F   there is a diagram ( )xr =  which is a root of P  over 1F . The 
important property of this proof by design is that we can construct a diagram r  
which is a root of P  (this is easy: just say that r  has the property ( ) 0=rP ) and 
which is element of an extension field (this is the hard and possibly surprising 
part). Ontologically, the theorem and its proof are not about abstract objects but 
about perceivable, observable and materially manipulable objects, viz, the dia-
grams 1

110
−

−+++ n
n xaxaa K . 



The best known special case of the above of course are the complex numbers 
where RF =  (the real numbers) and ( ) 12 += xxP . Thus the resulting diagrams 
are of the form bxa +  and ix =  is a root of 12 +x  in CF =1 . The product in 1F  

results from ( )( ) ( ) ( ) ( ) +++−=+++=++ xbcadbdacbdxxbcadacdxcbxa 2  
( )12 +xbd  which in 1F , i.e. modulo 12 +x , is ( ) ( )xbcadbdac ++− . The reader 

will recognize the usual product in C  where we write bia +  instead of bxa + . 
The diagrams in C  can be designed more directly, of course, without the use of 
the polynomials. This proceeds by considering all diagrams of the form bia + , 
by defining a sum and a product for them based on 12 −=i  (a stipulated diagram 
again) and by demonstrating via diagrammatic manipulations that thereby re-
sults a field. Focusing on the diagrams, their design and their operations instead 
of looking for "numbers" which are denoted by those diagrams turns this con-
struction into a rational and even perceivable and observable one. The complex 
numbers thereby loose their common imaginary and mythical quality. Thus the 
diagrammatic point of view contributes to demystifying mathematics. Of course, 
there remains the infinity of R  which is beyond diagrammatic means. Yet, on 
the level of C  this does not pose specific problems. 

To make the design of a root of ( )xP  and of a field containing it even more 
transparent I choose the specific case of 5ZF = , i.e. the field of residue classes 
of Z  modulo 5 which we denote for the sake of simplicity of writing by 
0,1,2,3,4. Consider the polynomial ( ) 22 += xxP  which easily is seen to have no 
root in 5Z  since the squares in 5Z  are 0,1 and 4 ( 12 +x  would have 2 as a root 
since 014 =+  in 5Z ). The elements of ( ) ( )xPxF /  are therefore the diagrams 

abxa ,+  and b  in 5Z , which are 25 elements among them all of 5Z  and, for ex-
ample, 3x2 ,4 ,3 ,2 +xxx , etc. For the sum, we have for example 
( ) ( ) xxxx 440332 =+=+++ ; and for the product ( )( ) xxxx 421332 ++=++  

( ) xxxxxx =++=++=+ 23313 222  modulo P . The latter more easily is ob-
tained by using 322 =−=x  in 5Z  or better in 1F . It is then a matter of dia-
grammatic reasoning to convince oneself that those newly designed diagrams 
with their operations of sum and product have all the properties of a field. Most 
of them are direct consequences of the respective properties holding in 5Z . For 
the multiplicative inverse one has to solve the equation ( )( ) 1=++ dxcbxa  with 

ba,  given for 5, Zdc ∈ . If 0=b  then ac /1=  and 0=d ; otherwise 

( )22 2/ baac +=  and ( ) ( )22 2/ babd +−=  (observe that 02 22 ≠+ ba  for all 

5, Zba ∈  not both zero). In this (finite) case one has a complete survey of all 
diagrams and there is absolutely no need for abstract objects which the diagrams 
possibly stand for. At least in these cases the mathematics is about the writing 
and manipulating of diagrams according to conventional rules which derive 
from specific purposes and intentions which can be viewed to be a possible in-



terpretant of the diagrams (the signs) in the sense of Peirce. Possibly one has 
then to take the diagrams as their own objects to complete the triadic sign rela-
tionship of Peirce. 

A similar analysis could be carried out for many other mathematical "construc-
tions". I just mention some more examples: direct products of algebraic struc-
tures (design is the writing of ordered pairs); design of finite geometries; exis-
tence of (combinatorial) graphs with certain properties. 

Conclusion 

I hope the reader has got an idea of what is meant by diagrammatic reasoning 
and of its power and usefulness in mathematics. But I hasten to emphasize that 
mathematics cannot and should not be reduced to diagrammaticity. There are 
powerful ways of mathematical thinking and reasoning which appear to evade 
diagrammatic methods, see Dörfler (2003b). Of very great interest also for the 
learning of mathematics possibly is the intricate interplay of diagrammatic and 
other ways of presenting mathematical ideas, their relationships and differences. 
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