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There are currently increased efforts to make proof central to school mathematics
throughout the grades. Yet, realizing this goal is not easy, asit requires that students
master several abilities. In this article, we focus on one such ability, namely, the
ability for deductive reasoning. We first offer a conceptualization of proof, which we
use to delineate our focus on deductive reasoning. We then review Johnson-Laird’s
mental modelstheory — a well-respected psychological theory of deductive reasoning
— in order to enhance what is currently known in mathematics education research
about deductive reasoning in the context of proof.

INTRODUCTION

There are currently increased efforts to make proof central to school mathematics
throughout the grades (e.g., Ball & Bass, 2003; NCTM, 2000). Y€, realizing this
god is not easy, as successful engagement with proof requires that students master
severa abilities, such as the ability to recognize the need for a proof (e.g., Boero et
a., 1996; Mason et a., 1982), the ahbility to understand the role of definitionsin the
development of a proof (e.g., Mariotti & Fischbein, 1997; Zadavsky & Shir, 2005),
and the ability to use deductive reasoning (e.g., Foltz et a., 1995; Polya, 1954). In
this article, we focus on the ability for deductive reasoning.

Available mathematics education research on proof offers: (1) existing evidence that,
and ingghts into how, supportive classroom environments can enable even
elementary school students to use deductive reasoning to construct arguments and
proofs (e.g., Bal & Bass, 2003; Maher & Martino, 1996); (2) understanding of
common difficulties that students face in using deductive reasoning in the context of
proof (eg., Coe & Ruthven, 1994; Hoyles & Kichemann, 2002); and (3)
understanding of socia and cognitive factors that play a role in students ability to
use deductive reasoning in the context of proof (e.g., Balacheff, 1991; Boero et dl.,
1996). The findings of this research can be complemented by the findings of
psychologica research on cognitively guided ways to enhance acquisition of this
ability, such as the research associated with Johnson-Laird’s (1983; Johnson-Laird &
Byrne, 1991) mental models theory. Although this psychological research makes only
few connections to the notion of proof, it can offer useful insights into proof
instruction in school mathematics. Of course, incorporating findings of psychological
studies on deductive reasoning into useful practices for promoting students ability
for proof requires first a considerable amount of interdisciplinary research to build
necessary bridges between psychology and mathematics education.

Our objective is to review Johnson-Laird’s mental models theory — a well-respected
psychological theory of deductive reasoning — in order to enhance what is currently




known in mathematics education research about this ability in the context of proof.
The aticle is structured into two sections. In the first section, we offer a
conceptualization of the meaning of proof in school mathematics and we use this
conceptualization to delineate our focus on deductive reasoning. In the second
section, we review the mental models theory of deductive reasoning and we discuss
implications of this theory for proof instruction.

PROOF AND DEDUCTIVE REASONING
Our conceptuaization of the notion of proof in this article is summarized as follows:

Proof is a mathematical argument, a connected sequence of assertions for or against a

mathematical claim, with the following characteristics:

1. It uses statements accepted by the classroom community (set of accepted statements)
that are true and available without further justification;

2. It employsforms of reasoning (modes of argumentation) that are valid and known to,
or within the conceptual reach of, the classroom community; and

3. It is communicated with forms of expression (modes of argument representation)
that are appropriate and known to, or within the conceptual reach of, the classroom
community. (Stylianides, 2007, p. 291)

The conceptualization of proof breaks down each mathematical argument into three
magjor components. the set of accepted statements (e.g., definitions, axioms,
theorems), the modes of argumentation (e.g., application of logical rules of inference
like modus ponens), and the modes of argument representation (e.g., verbal, pictorial,
algebraic). The use of the terms “true” “valid,” and “appropriate’” in the
conceptualization should be understood in the context of what is typically agreed
upon in the field of mathematics nowadays. Of course, this is not to say that these
terms have universal meaning in the field of mathematics nowadays, but it is beyond
the scope of this article to elaborate on thisissue.

The notion of deductive reasoning corresponds to the component modes of
argumentation. The conceptualization denotes that such modes used in an argument
that qualifies as a proof need to be valid and, therefore, they need to support logically
necessary inferences from a given set of premises. According to commonly accepted
notions of deductive reasoning, logicaly necessary inferences directly implicate the
use of deductive reasoning. For example, Klaczynski and Narasimham (1998) note
that deductive reasoning refers to logically necessary inferences drawn “from a
general set of givens or premises’ (p. 865). Important to note is that we do not
associate the notion of deductive reasoning with particular modes of representation,
such as modes that may be characterized as formal versus informal.

MENTAL MODELSTHEORY AND INSTRUCTIONAL IMPLICATIONS

Before we describe the menta models theory, three caveats are in order. First,
although the mental models theory is well respected in cognitive psychology, by
choosing it for presentation in this article we do not suggest that it is the best theory



currently available in the domain of deductive reasoning. For example, thereis Rips's
(1994) theory of deductive reasoning, which is based on natura-deduction systems
for predicate logic and has levels of empirical support similar to the mental models
theory. Second, the mental models theory provides an explanation of reasoners
thinking processes on a small range of deductive reasoning tasks, namely, syllogistic
inference tasks. Other theories address different kinds of deductive reasoning tasks.
For example, the pragmatic reasoning schema theory (Cheng & Holyoak, 1985)
addresses selection tasks. Third, there is still much to be learned about the mental
models theory and how it relates to other theories of deductive reasoning. For
example, athough we have comparisons of the menta models theory and the
pragmatic reasoning schema theory (e.g., Moshman, 1998), psychologists have not
yet analyzed fully the relationship between these two theories.

To conclude, our discussion of the mental models theory is intended to initiate
discussions and interdisciplinary efforts on how proof instruction can benefit from,
and use the findings of, psychological theories of deductive reasoning. We see our
discussion as the very first step in a long process that will consider other theories
besides the one considered in this article.

Presentation of the theory

The menta models theory assumes that deductive reasoning, as it applies to
syllogisms (i.e., arguments from premises to an inference or a conclusion), depends
on three main stages (Johnson-Laird & Bara, 1984). First, the reasoner constructs a
mental model of the information presented in the premises of a syllogism, where by
“mental model” is meant a representation in the mind that has a structure analogous
to the structure of the situation it represents. Second, the reasoner scans this model
for an informative conclusion that is true. Third, the reasoner searches for alternative
mental models that may lead to refutation of the conclusion (counterexamples). In
this approach, developmental changes in the ability for deductive reasoning reflect:
(1) improvement of the linguistic competence to comprehend logical terms (e.g., and,
or, not, if, none, some, al) in the premises and, thus, of the ability to construct
appropriate models of those premises; and (2) advancement in the management of
these models due to increase in processing capacity (Johnson-Laird, 1990).

Johnson-Laird and Byrne (1991) argue that “people make deductions by building
models and searching for counterexamples’ (p. 203). They consider that the aoility
for deductive reasoning is equivalent to the “capacity to build models of the world,
either directly by perception or indirectly by understanding language, and [the]
capacity to search for alternative models’ (p. 204). According to the mental models
theory, the unfolding of these capabilities occurs under the control of innate
constraints:

What developsin childhood is the ability to understand language, the processing capacity
of working memory (Hitch and Halliday, 1983; Case, 1985), and the metaability to
reflect on one' s own performance. Seven year-olds cannot cope with syllogisms because



they do not understand quantifiers correctly (see Inhelder and Piaget, 1964). Nine year-
olds can cope with one-model syllogisms, but not with more than one model (Johnson-
Laird, Oakhill, and Bull, 1986; Acredolo and Horobin, 1987). Their working memory
appears to lack sufficient capacity to retain alternative models of the premises. (Johnson
Laird & Byrne, 1991, p. 204; emphasis added)

As the excerpt above suggests, the degree of success with which mental model
construction and examination can be achieved depends on a person’s working
memory capacity. In other words, the number of models that are constructed and the
figura arrangement of terms that can be made within the premises®, which constitute
the two major factors that determine the difficulty of making inferences, seem to be
intimately related to working memory:

The effects of both number of models and figure arise from an inevitable bottleneck in
the inferential machinery: the processing capacity of working memory, which must hold
one representation in a store, while at the same time the relevant information from the
current premise is substituted init. (Johnson-Laird, 1983, p. 115)

In general, working memory capacity plays a central role in the theory’s successful
accounting for patterns of performance in deductive reasoning (Johnson-Laird, 1983).
More specifically, errors occur because limitations in working memory capacity
make people fail to consider all possible models of the premises that would provide
them with counterexamples to the conclusions they derive from their initial models
(Johnson+Laird, 1983; Johnson-Laird & Byrne, 1991). In turn, thislimitsindividuals
ability for validation, for it constrains their ability to consider more than one model at
atime (Johnson-Laird & Bara, 1984).

Johnson-Laird and colleagues (1986) experiments with two groups of children (9 to
10-year-olds and 11- to 12-year-olds) provide support to the claim that the aoility to
solve syllogistic problems is associated with the number of mental models that have
to be constructed for the solution of a given problem. In one experiment — where the
two groups of children drew conclusions from 20 pairs of syllogistic premises — no
child in either group made a correct response to the three-model problems, whereas
all subjects (the only exception being one 9-year-old) made at least one correct
response to a one-model problem. In another experiment — where 16 11-year-olds
were tested on all 64 possible forms of syllogistic premises® — the children made only
2% correct responses to the three-model problems, as compared to 26% and 63%
correct responses to the two- and one-model problems, respectively. Overdl, in both
experiments, “performance was best with one-model problems and better than chance
with two-model problems’ (Johnson-Laird et al., 1986, p. 52); correct responses with
three-model problems were virtually non-existent.

Investigations with adults revealed a similar pattern of performance, that is, best
performance on one-model problems and worst on three-model problems, with the
main difference being that the number of problems of each type that the adults solved
correctly was typically larger than the corresponding number for children.



Interestingly, when adults had only 10 seconds to respond to syllogistic premises,
their performance dropped to a level amost identical to that of the 11-year-olds
(Johnson-Laird & Bara, 1984). Anderson et a. (1996) make an attempt to explain
these results by using Case’'s (1984) ideas about short-term operating and storage
spaces. “while the overall capacity of short-term memory does not increase as a
function of development, the effect of practice at tasks results in more efficient use of
short-term operating space, leaving greater capacity in short-term storage space”
(Anderson et a., 1996; p. 270). Therefore, “[a]s learners get older, they become more
adept at building, maintaining in memory, and testing a transitory mental model”
(Anderson et d., 1996; p. 270). Increases in the information storage capacity would
clearly be beneficia for learners capacity to achieve these processes.

Discussion of thetheory

The mental models theory has not been applied in the teaching and learning of proof,
so the examples one can find in the literature illustrating the theory are not focusing
on the notion of proof (rather, they are mostly syllogistic tasks placed in non
mathematical contexts). We begin our discussion of the theory with an example of a
proving task that we constructed in order to illustrate possible applications of the
theory in the particular domain of proof.

Consider the following two premises, which are basically definitions for multiples of 3
and 6:

Aninteger isamultiple of 3if and only if it isthree times an integer.

Aninteger isamultiple of 6 if and only if it issix times an integer.
What can be said (if anything) about any multiple of 6 in relation to a multiple of 3?
Prove your answer.

Using the first premise, the following algebraic expression is constructed for any
multiple of 3: 3, where | is an integer. Likewise, using the second premise, the
following expression is constructed for any multiple of 6: &, where k is an integer.
Using the information in the two premises, the following model is constructed:

Any multiple of 6 is of the form 6k = 3¢ (2k) = 3I, amultiple of 3.

As this model cannot be falsified with an alternative model, the conclusion is
considered valid. That is, we have proved that any multiple of 6 is also a multiple of
3. Successful completion of this proving task depends, given the tenets of the mental
models theory, on the linguistic competence of the reasoner to comprehend the
logical term “if and only if” in the premises and on the reasoner’ s processing ability
to combine the information from the two premises and search for aternative models.

The structure of the proving task we just analyzed was purposefully organized so that
there is a clear set of premises from which the reasoner can draw information to
construct a mental model. Y et, most of the proving tasks encountered by students and
professional mathematicians do not have this clear structure. Typical proving tasks
consist only of the question/prompt (in the particular case: “What can be said [if



anything] about any multiple of 6 in relation to a multiple of 3? Prove your
answer.”), leaving it up to the reasoner to select a collection of relevant premises
from his or her community’s set of accepted statements (cf. our conceptualization of
proof) to construct a proof. Accordingly, the mental models theory seems to be useful
in accounting for the solution of a proving task once a set of premises has been
specified (either by the task itself or by the reasoner). Of course, the reasoner can
revise the set of premises by adding or deleting premises in order to end up with a
sufficient set of premises for the solution of the proving task. Each time a new set of
premises is established, the mental models theory can be reapplied.

The mental models theory denotes that limited working memory capacity constrains
students' performance in deductive reasoning tasks of which proving tasks are a
proper subset. This implies that mathematics educators can potentialy foster the
improvement of students' performance in proving tasks in two interrelated ways:. (1)
by preventing unnecessary usage of students working memory when they engage
with proving tasks, and (2) by helping students develop strategies for effective
managing of their working memory.

An example of (1) is for mathematics educators to engage students in “scaffolded”
proving tasks (like the one presented earlier) that specify for the students a small set
of relevant premises for the solution of the task. By excluding irrelevant premises
from students consideration when engaging with a proving task, students are freed
from the memory-consuming effort to combine information from more premises and
construct more complicated mental models than they actually need to. In this way,
students are facilitated to focus on the logical structure of the proof and the ideas
involved in it. Of course, at some point, educators would like students to become able
to identify by themselves the relevant premises for the solution of a proving task.
Y et, the kinds of scaffolded proving tasks described earlier can be very useful in the
early stages of students engagement with proof, for they can help students develop
necessary skills that will support their independent engagement with proof in the
future.

An example of (2) is for mathematics educators to help students develop the strategy
of representing the information in the premises in equivalent and easier to manage
forms (from a working memory standpoint). Looking back to our analysis of the
proving task at the beginning of our discussion of the theory, we see that the two
premises were reformulated to algebraic expressions, which, due to their conciseness,
reduce the processing load thereby facilitating the solution of the task. A related
strategy that mathematics educators can assist students to develop is making efficient
use of visual records such as diagrams (see, e.g., Bauer & Johnson-Laird, 1993;
English, 1998; Sweller et a., 1998). This strategy can involve not only the use of a
visual record when one is not aready offered in a proving task but also the use of an
existing diagram to practicaly integrate disparate sources of information and
facilitate solution. It is often the case in proving tasks, especialy in geometry, that
students are offered a diagram (e.g., a geometric figure) and then a set of givens



(premises) which, although refer to the diagram, are separated from the diagram. To
make sense of the two sources of information, the diagram and the givens, students
must mentally integrate them. For example, to derive any meaning from a given,
students must read the given, hold it in their working memory, and then search the
diagram for the appropriate referents. This mental integration process is clearly
cognitively demanding and occupies a large part of their working memory capacity.

The works of Case (1984) and Anderson et a. (1996) we reviewed earlier suggest
that practice can help students become more skillful in overcoming the limitations of
their working memory capacity, thereby pointing to an educationa implication for
improving students' ability for deductive reasoning. This implication has first been
proposed by Johnson-Laird (1983) based on his observations of “spontaneous
improvement in [deductive] reasoning ability simply as a consequence of practice
(with no feedback)” (p. 124). Adults in Johnson-Laird’s experiments who have been
tested twice within a week showed a 10% improvement in their performance, without
even forewarning that they would be retested (Johnson-Laird & Steedman, 1978).

The idea that practice can play an important role in the development of students
ability for deductive reasoning, and thus in their ability for proof, is not emphasized
in mathematics education research on proof. Research studies on teaching practices
that have successfully promoted students ability for proof do not explicitly identify
practice as one of the factors that might have contributed to this success. Part of the
reason for which there has been little attention to the potential role of practice in
proof learning might be that practice has often been associated with secondary
aspects of students' engagement with proof, such as the writing of a proof in the two-
column form. According to the two-column form, which prevailed in high school
geometry courses in the Unites States for amost a century, “the statements of the
proof [are placed] in steps in a column occupying the left half of the page, and ... the
reasons of the statements [are placed] in steps at the right side of the page, with each
reason directly opposite its statement” (Shibli, 1932, p. 145). The emphasis on the
form made the writing of a proof a ritual procedure that had to be practiced and
memorized; as a result, “the substance of proof as a logical and coherent chain of
reasoning that guarantees that something must be true became obscured”
(Schoenfeld, 1991, p. 325).

Y et, associating practice only with secondary aspects of students engagement with
proof does not do justice to the potential role that practice can play in proof learning
as suggested by the psychologica research reviewed in this article. An obvious
possible use of practice is to help students develop the kinds of strategies for
effective managing of their working memory that we described earlier. In addition,
we hypothesize that practice can be used to help students internalize the general
logical structure of different proof methods, such as proof by contradiction, thus
releasing working memory capacity to be spent in the application of these proof
methods. For example, consider the proposition: “There is no smallest positive
rational number.” In a proof of this proposition by contradiction, one would start by



assuming the opposite of the proposition and would show that it leads to a logica
contradiction:

We assume the opposite of the statement we wish to prove: “There is a smallest positive
rational number, say y.” Now let x=y/2. Then x is a positive rational number that is
smaller than y. But this contradicts our initial assumption that y is the smallest positive
rational number. So we can conclude that the original proposition must be true — “There
is no smallest positive rational number.”

If a student who has not internalized the logica structure of the proof method by
contradiction attempts to apply the method to prove the proposition, this student will
experience increased processing load of working memory and will likely face
increased difficulties with the proof.

CONCLUSION

In this article, we reviewed an influential and well-respected psychological theory of
deductive reasoning, namely, Johnson-Laird’s theory of mental models, in order to
enhance what is currently known in mathematics education research about this ability
in the context of proof. Our review offered useful insights into potentially effective
instructional practices for fostering students’ ability for deductive reasoning in the
context of proof. Nevertheless, it is a long way before these insights can find their
way to the practices of ordinary teachers.

A major challenge, but also a primary urgency, for researchers concerned with issues
of proof instruction is to identify effective ways to synthesize relevant research
programs in mathematics education and psychology. This article has made afirst step
towards this direction by bringing to the attention of mathematics education
researchers a rich body of psychological research on deductive reasoning and by
identifying important issues that require research attention. An interdisciplinary and
collaborative approach to the problem of promoting proof in students learning of
mathematics promises major advancements.

NOTES

1. The two authors had an equal contribution in writing this article.

2. For example, syllogisms that involve two premises with three terms (X, Y, and Z) can occur in
one of four figures as shown below:

X=-Y Y -X X-Y Y -X

Y-Z Z-Y Z-Y Y-Z
3. The 64 possible forms of syllogistic premises are derived as follows. four quantifier
combinations for each of two premises that can occur in one of four figures as explained in endnote
2 (i.e.,, 64=43).
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