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Abstract. The famous Euclid’s theorem on the infinity of prime numbers represents a typical case 
of difficulties for students. In this work we present some reflections and proposals to contrast such 
difficulties, focused on: a) the problem of proofs by contradiction – in this case viewed as 
inessential – also in relation with the dychotomy potential/actual infinite; b) a comparison between 
the current proof and the original Euclid’s one, especially for its potential influence on the building 
of algebraic language; c) the opportunity of privileging students’ exploratory activities as 
necessary steps toward the construction of the proof, and the chances that a wise use of 
technologies offer to this exploration. 

 

INTRODUCTION AND THEORETICAL FRAME 

It is widely recognized that students encounter several difficulties in 
understanding and producing mathematical proofs. The problem is somewhat specific 
in Geometry, where the role of pictures can be seen as a guide to reasoning. But a 
large part of theorems in Geometry appear as self-evident, so that a proof hardly 
seems necessary, while in a few cases proofs are difficult, with the result that students 
often resigns themselves to learn by hearth without any awareness of the arguments. 
On the contrary, in Arithmetics some meaningful properties can be selected, at the 
same time simple and non-trivial, therefore very suitable for introducing students to 
proofs. This is the case of Euclid’s famous theorem on the infinity of prime numbers. 

In this paper we want to stress some particular features of this theorem, from 
historical, epistemological and didactical points of view. In particular we want: a) to 
analyze the influence of a comparison between the original proof and two modern 
versions of it, on the development of students’ linguistic competences (the use of 
algebraic symbols); b) to show how the difficulties of students in understanding a 
proof by contradiction, can, in a sense, be neglected, since it is neither strictly 
necessary nor effective to proceed in this case in an indirect way; c) to stress the role 
of technologies in assisting the heuristic stage as a necessary step before the proof, 
both for motivation and for a (partially) autonomous construction of the proof itself. 

Many authors have variously emphasized the importance of using history (in 
particular, original sources) in Mathematics Education (Fauvel & Van Maanen, 
2000), (Katz, 2000), (Furinghetti & Radford, 2002), (Castagnola, 2002a). It is not a 
case that in the last years many texts and materials have been specifically devoted to 
teachers: for instance, (Berlinghoff & Gouvêa, 2004), with a lot of references, and 
(Katz & Michalowicz, 2005); or websites like (1), a real mine of historical 



information; or Convergence, an online magazine, (website (4)), where mathematics, 
history and teaching interact. The introduction of a historical dimension reaches 
many goals: it humanizes the image of mathematics and helps in modifying the 
current view of mathematics as made of continuous progresses, showing a lot of 
sudden turning-points, wrong paths and blind alleys, which gives meaning to 
otherwise boring students’ efforts; and it offers materials to develop intuition, 
particularly when presented using modern symbols, verbal expressions and cultural 
tools, instead than, according to Recapitulation Principles, those employed by ancient 
authors.  

A different problem concerns students’ difficulties in using algebraic language for 
abstracting and generalizing (Radford, 2000). Such difficulties are still more evident 
when a proof is involved (Mariotti, 1998), in particular a proof by contradiction. 

Calculators, in particular the graphic-symbolic ones, are widely recognized as 
precious tools in school practice (Castagnola, 2002b). First of all, they free both 
teachers and students from the risk of “getting lost” in cumbersome calculations, 
allowing to turn attention to problems, at the same time more meaningful from a 
mathematical point of view and closer to the complexity of real world (Kaput, 2002), 
(Paola, 2006). Moreover, technological tools, bearing an “embodied intelligence”, 
can be seen as powerful means to facilitate objectification and generalization of 
mathematical concepts (Radford, 2003), and to overcome some students’ rigidities 
(“the prime numbers are only 2, 3, 5” or “the really existing numbers are only small 
integers”). Finally, in Mathematics Education a combined use of history and 
technology has already taken into account (Castagnola, 2004). 

 

THE THEOREM ON THE INFINITY OF PRIME NUMBERS  

The theorem on the infinity of prime numbers is one of the most famous and of 
the most “beautiful” in the history of mathematics. Several proofs have been 
produced (see for instance the website (3)), but the best known, modelled on Euclid’s 
original proof, is surely the most easily understood, a striking example of simplicity 
and elegance. In spite of that, this proof appears much more obscure for students than 
we could think at first sight. A deep and careful analysis of the proof and of its 
didactical implications is presented in (Polya, 1973). After that, many authors have 
focused their attention on the difficulties involved in the contradiction argument 
employed in the proof, e.g.  (Reid & Dobbin, 1998). Other authors have underlined 
the logical subtleties, all but easy to be understood, involved in such kind of 
reasoning (Antonini, 2003), (Antonini & Mariotti, 2006); or the necessity to enter an 
“imaginary” world, where the usual rules of logic can be put in doubt (Leron, 1985). 
(For more references, see the quoted papers). In particular, Leron notes how the 
“distance” between the assumption a contrario and the conclusion causes the total 
loss of all the constructions performed in the intermediate steps, erroneously 
perceived as meaningless.  



We believe that this kind of difficult ies constitute a very serious problem. But 
since, in the specific case of our theorem, reasoning by contradiction does not seem 
to us anyhow necessary for the proof, we don’t enter here into this subject, which 
surely deserves further attention, as we intend to do elsewhere. Instead, we prefer to 
devote our attention to other aspects. In particular, we believe that a big difficulty is 
connected with the idea of infinity, another one with the use of algebraic notations. 
Moreover, we think that comparing the actual proof with the original Euclid’s version 
can help students to overcome such difficulties. Another decisive help comes from 
technological tools, today easily available in classwork.  

We want to begin comparing three versions of the proof: the original Euclid’s one 
(Proposition 20, book IX of Elements), as reported in (Heath, 1956); the “modern” 
(1925) version of the same author; and that used today in mathematics texts.  

I. Euclid’s version.  

“PROPOSITION 20. Prime numbers are more than any assigned multitude of prime 
numbers. 

Let A, B, C be the assigned prime numbers; I say that there are more prime numbers than 
A, B, C. For let the least number measured by A, B, C be taken, and let it be DE; let the unit 
DF be added to DE. Then EF is either prime or not. 

 
First, let it be prime; then the prime numbers A, B, C, EF have been found which are 

more than A, B, C. 

Next, let EF not be prime; therefore it is measured by some prime number [VII. 31]. Let 
it be measured by the prime number G. I say that G is not the same with any of the numbers 
A, B, C. For, if possible, let it be so. Now A, B, C measure DE; therefore G also will 
measure DE. But it also measure EF. Therefore G, being a number, will measure the 
remainder, the unit DF: which is absurd. Therefore G is not the same with any one of the 
numbers A, B, C. And by hypothesis it is prime.  

Therefore the prime numbers A, B, C, G have been found which are more than the 
assigned multitude of A, B, C.  Q.E.D.” (Heath, 1956, v. 2, p. 412) 

II. Heath’s version   

“The number of prime numbers is infinite.  

Let a, b, c, … k be any prime numbers. Take the product abc⋅⋅⋅k  and add unity. Then 
(abc⋅⋅⋅k + 1) is either a prime number or not a prime number. 

(1) If it is, we have added another prime number to those given. 

(2) If it is not, it must be measured by some prime number [VII. 31], say p. Now p cannot 
be identical with any of the prime numbers a, b, c, … k. For, if it is, it will divide 



abc⋅⋅⋅k. Therefore, since it divides (abc⋅⋅⋅k + 1) also, it will measure the difference, or 
unity: which is impossible. 

Therefore in any case we have obtained one fresh prime number. And the process can be 
carried on to any extent”. (Heath, 1956, v. 2, p. 413) 

III. A typical today version 

There exist infinitely many prime numbers.  

Let us suppose that all the prime numbers are the following: p1, p2, …, pn. The purpose is 
to prove that there is a prime number not included in this list. For that, consider the natural 
number M = p1 ⋅p2 ⋅⋅⋅pn + 1 and examine the two alternatives: 

Case 1. If M is prime, then it is certainly a “new” prime not included in the previous list, 
because it is greater than each number p1, p2, …, pn. 

Case 2. If M is composite, then it has a prime divisor q. We say that q does not belong to 
the initial list of prime numbers. In fact, if q = pk for some k, then q would divide both M 
and p1 ⋅p2 ⋅⋅⋅pn and therefore also their difference M − p1 ⋅p2⋅⋅⋅pn = 1. But the prime number q  
cannot be a divisor of 1. This contradiction implies that q is different from every pk and 
hence it is the new prime we were looking for. 

 

TWO EPISTEMOLOGICAL QUESTIONS  

It is very interesting to compare the three proofs. The substance of reasoning is 
evidently the same, but many meaningful differences leap before our eyes, 
concerning the meaning of the concepts involved, the “sense” of infinity, the 
language employed, and so on. (Many interesting comments on Euclid’s “style” are 
reported in the historical website (2)). As an example, Euclid’s notion of prime 
number is different from the nowadays accepted one: “A prime number is that is 
measured by a unit alone.” (Definition 11, Book VII). Thus, Euclid, like the 
overwhelming majority of our students, does not consider among the possible 
divisors of a number the number itself (a divisor must be smaller than the number that 
it divides). This allows an interesting discussion on the evolution of mathematical 
definitions (see, for this, (Paola, 2000), (Zaslavsky & Shir, 2005)).  

Of course, a detailed analysis of all the differencies between the proofs would 
bring us very far. Here we want to focus our attention on two particular points: the 
roles of the reasoning by contradiction and of infinity in the proof of the theorem, and 
the evolution of algebraic linguistic tools used to denote numerical variables. 

The roles of the proof by contradiction and of infinity 

By comparing the different proofs, but also their statements, we can note that 
Euclid doesn’t mention directly the infinity of prime numbers. His conception of 
infinity is potential: whatever collection of prime numbers we start with, there is 
always another prime number not included in it (and the proof shows in what way “to 
build it”); i.e. prime numbers are always more than any established quantity of them. 



It is clearly a way of perceiving the infinity more familiar to students; in fact, it 
corresponds to the very early way of understanding natural numbers as an infinite 
collection, in accordance with the fact that for every natural number n, big as it can 
be, there is a bigger one: the successor of n. In our opinion this is the only way of 
conceiving the infinity at the beginning of secondary school. Well, if we state the 
theorem as Euclid did, then we realize that the proof is direct and even 
“constructive”; and that nothing prevents us to conclude the proof saying: “Therefore 
the prime numbers are infinitely many”. 

The need for the proof by contradiction, whose length – the length of permanence 
in the “absurd” world – can however be reduced (Leron, 1985), rises on the contrary 
from the fact that the subtle, and very awkward for students, concept of actual infinity 
is employed, whose definition is, among other things, given by negation: a set is 
infinite if it is not equinumerous to any initial segment {1, 2, …., n} of the set N of 
natural numbers1. To deny such a property we need a double negation: we suppose, 
by contradiction, that the prime numbers are finitely many, therefore it is not true that 
doesn’t exist an n for which they can be put in a one-to-one correspondence with the 
set {1, 2, …., n}; therefore such an n exists and this allows to represent the prime 
numbers as p1, p2, …, pn. Then the proof goes on till the conclusion. It is quite evident 
that such a way to present the result makes it uselessly involved, by bringing logical 
and linguistic subtleties in the foreground, and hiding the substance and the 
constructiveness of the main argument. 

On the development of algebraic notations 

Let us compare the ways by which the first prime numbers are denoted in the three 
proofs. In Euclid’s proof 3 prime numbers are considered, denoted by the 3 first 
letters of the alphabet. The proof is than carried out in a way that suggests that if, 
instead of 3, we had used any number, the result should have been the same. A 
particular case is treated, but “we see” that it has a general value. The use of the 
number 3 in Euclid (by the way, it would be amusing to ask why the choice turns just 
to 3, but this is another talk) is similar to the use and the drawing of a “generic” 
triangle to argue about any triangle, a question on which many authors have 
discussed, from Kant onwards, see for instance (Lolli, 2005). This way of proceeding 
is surely a little “bug”, if we see it with the eyes of modern rigour (it is likely that 
Euclid were aware of this, but he had not at his disposal a more rigorous linguistic 
tool), but it is also the way we proceed very often also today in mathematical 
communication, evidently because the greater concreteness of the particular case 
yields greater effectiveness. Moreover, it stimulates the ability to integrate intuition 
and reasoning and to control and keep distinct what is specific from what is general.  

                                                 
1 Not to speak of the deep theoretical problems underlying the definition of an infinite set: as it  is well known, the 
definition is not unique, and the Dedekind’s one (a set is infinite if it is equipotent to a proper subset), is equivalent to 
the first one only if we accept the axiom of choice. The questions involved are by far too challenging for students. 



In Heath’s version the first prime numbers are denoted by a, b, c, … k, the first 
letters of the alphabet. The “analogy” between the alphabetical ordering and the order 
of natural numbers is still kept, but the trick of the dots allows to directly treat the 
case of any number. Also this linguistic solution can be criticized: after all, k is the 
11th letter of the (English) alphabet, but it indicates, on the contrary, any position in 
the alphabet (evidently 11 seems a big enough number to assume this role). But such 
a criticism is expression of an excessive pedantry, since in this case (as, and perhaps 
better, than in Euclid’s version) no misunderstanding is possible: as a matter of fact, 
this type of notation is everyday systematically used without any trouble. 

The notation in the third version of the proof is completely different. The first 
prime numbers are represented by p1, p2, …, pn, where indexes and dots are used to 
give an account of the indefinite amount of involved elements. There is no doubt 
about the superiority of this notation, the result of a long evolution and of more and 
more urgent demands of rigour in the history of mathematics. But we do raise some 
doubts on the opportunity of using this notation at school, or at least we wonder if it 
is correct to propose this sophisticated form of language with too much confidence 
and without the necessary care and graduality. Probably it could help to introduce 
previously the list (an ordered set of elements), an important data structure of 
computer science, widely used in many scientifical contexts, for instance in statistics. 

Coming to students’ behaviour, we know that they tend to see in the use of letters 
only a shortened way to describe some property. For instance they interpret without 
any difficulty an expression like A = ½⋅b⋅h as the formula for the area of a triangle. It 
is more difficult for them to use an expression containing letters as a tool for 
abstraction and generalization (Radford, 2000).  

In fact, students feel the modern notation in the proof of our theorem too involved, 
and in general prefer Euclid’s proof. This can be observed whenever the proof is 
proposed by the teacher, and, if they choose by themselves the symbols to represent 
the situation, almost no one uses a notation similar to the modern one, while Euclid’s 
or Heath’s notations appear often. Moreover, we have not to forget that doesn’t exist 
any formula with n as a variable to represent the nth prime number, contrarily to what 
happens for simpler sequences. For instance it is less difficult (but by no means 
trivial) to accept the symbol 2k−1 to represent the general odd number: the reason is 
that the sequence 1, 3, 5, …, of odd numbers is easily recognised to be generated by 
natural numbers, by subtracting a unit from the double of each of them, so the symbol 
2k−1 looks exactly as the expression of such a procedure. 

We can resume our discussion saying that the proof “with indexes” doesn’t 
convey anything more then the classic one. By this, we are not saying that indexes 
shouldn’t be used (they are useful and sometimes necessary, for example for lists), 
but only that we must carefully arrive to this point and do not overlap the effort of a 
proof to that of a too subtle and not strictly necessary use of linguistic tools. 

 



THE ROLE OF TECHNOLOGY IN THE EXPLORATORY PROCESS 

According to a constructivistic point of view, we believe that a mathematical 
result can come in a class only after an exploratory process. In our case, as in other 
ones, this approach enhances motivation and understanding of the statement of the 
theorem and of its proof; and, as we will see, it offers also the possibility to touch 
other topics, to formulate conjectures, to discover properties.  But, in order to be able 
to carry the exploration far enough, technology turns out to be an essential 
instrument. In this section we illustrate the main lines of a widely experimented 
didactical path inspired to the above principles. In the classwork the exploratory 
activity is always intertwined with readings from original sources, and is performed 
by individual work and collective discussions.  

A first activity consists of trying to understand how prime numbers are arranged 
among natural numbers. For instance, we can build a table collecting the number of 
primes in each century from 1 to 1000, like the following one (Burton, 2005, p. 383): 

Interval 1 - 
100 

101 - 
200 

201 - 
300 

301 - 
400 

401 - 
500 

501 - 
600 

601 - 
700 

701 - 
800 

801 - 
900 

901 - 
1000 

Number of primes 25 21 16 16 17 14 16 14 15  14 

By inspection of this table (and, if necessary, of larger ones, to be found on 
catalogues or on websites like (3)), we note that prime numbers, though irregularly, 
tend to become rarer and rarer. It is known (and can be shown to students) that for 
any number n, it is possible to find a sequence of n consecutive natural numbers 
which are all composite: for instance, the n numbers (n+1)!−(n+1), (n+1)!−n, …, 
(n+1)!−3, (n+1)!−2. Moreover, since programs of symbolic calculation like DERIVE 
and MAPLE contain, in their library of functions, the function π(x) that tells how 
many primes are less than or equal to x, it is possible to graph π(x) using bigger and 
bigger values of x: the graph seems to become more and more “horizontal”.  

So, the observation of both tables and graphics highlights a phenomenon for 
which there are two possibilities: either prime numbers somewhere disappear from 
the sequence of natural numbers, and hence they are finitely many, or for every prime 
p it is possible to find a greater one, and hence they are infinitely many2. The theorem 
we are considering justify itself as the answer to this dilemma. 

Now the problem naturally arises: how a number like p1⋅p2⋅⋅⋅pn+1 came into 
Euclid’s mind? This gives the opportunity of opening a discussion on the question: 
“If a finite number of primes are given, how can I build another prime not already in 

                                                 
2 Perhaps we can take here the opportunity of speaking about asymptotes in a non-conventional way. Or, if we are 
working with young students, it is possible (or even suitable) to riconsider the topic some years later, proposing to them 
to approximate the function π(x) with a function f(x) regular enough, namely with continuous first and second 
derivatives. Students should conclude that the first derivative has to be non-negative and the second one negative, 
without ruling out the possibility that f(x) becomes definitively constant. By the way, we know that the function π(x) is 
asymptotic to the function g(x) = x/ln(x), and that g’(x) > 0 for x > e and g”(x) < 0 for x > e2. 



the list?” So, the construction in Euclid’s proof can again be preceded by an 
exploration. There are many available procedures: for instance, we can carry on the 
following one. Let’s start from the prime number 2 and build the number a1 = 2+1 = 
3, which is prime. In the second step build a2 = 2⋅3+1 = 7, prime. From 2, 3 and 7, 
obtain a3 = 2⋅3⋅7+1 = 43, prime. At the next step we get: a4 = 2⋅3⋅7⋅43+1 = 1807 = 
13⋅139. Both 13 and 139 are “new” primes; we could use both, but taking only the 
smaller, we obtain: a5 = 2⋅3⋅7⋅43⋅13+1 = 23479 = 53⋅443. And so on…  

Otherwise we can follow the more “known” path: b1 = 2+1 = 3, which is prime; b2 
= 2⋅3+1 = 7, prime; b3 = 2⋅3⋅5+1 = 31; b4 = 2⋅3⋅5⋅7+1 = 211; b5 = 2⋅3⋅5⋅7⋅11+1 = 
2311, all prime numbers; b6 = 2⋅3⋅5⋅7⋅11⋅13+1 = 30031 = 59⋅509. And so on.3 

This process actually gives more and more new prime numbers. We can use a 
symbolic calculator (here we are using TI-89 Titanium) to overcome the lenghtness 
and difficulties of calculations but also to distinguish between the two possible cases 
for bi, since the command factor allows to easily establish if a given number is 
prime or composite (see Figure 1). When the calculation is not assisted by a powerful 
tool, it is quite sure that only the first case is noticed, since the first composite value 
of p1⋅p2⋅⋅⋅pn+1 is too big. On the contrary, by the aid of a calculator, the exploration 
can go on without difficulties, to reach for instance the case shown in Figure 2. In our 
opinion, this is a simple and meaningful example, to see how a calculator can be a 
really useful tool in helping students to understand and build a meaning. 

                     
      Figure 1    Figure 2        Figure 3 

It is important to stress that the observation of a finite number of cases can never 
replace a proof, but it allows only to do some conjecture, to be confirmed or 
disproved. History tells us how that behaviour can be misleading: it is enough to 
recall the well known example of Fermat who in 1640 enunciated the conjecture “All 
the numbers Fn = 22 1

n

+  are prime” (n any natural number). Let’s still use a symbolic 
calculator to examine the conjecture. We insert in Editor (where functions can be 
defined) the function y1(x) = 2^(2^x)+1. Using the command factor, we discover 

                                                 
3 The numbers bi are interesting in themselves. As observed, the first five of them are all prime numbers, whereas b6, b7, 
b8 are not. In (Burton, 2005) many interesting facts are reported: for instance till today (2005) only 19 primes have been 
identified in the sequence (the largest, discovered in 2000, that is  p1⋅p2⋅…⋅42209 + 1, has 18241 digits), while all the 
other bi’s for p ≤ 120000 are composite. And nobody knows whether there are finitely or infinitely many primes of the 
form bi. Well, knowing about simple problems still unsolved is always a fascinating stimulation for students. 



that the conjecture is actually false, showing (see Figure 3) that F5 is not prime, but is 
the product of two primes: F5 = 232+1 = 641⋅67004174.  

 

CONCLUSIVE REMARKS AND FURTHER DEVELOPMENTS  

In the previous section we have suggested a possible classroom path for the proof 
of the theorem. One of the two authors has experimented for years in his classes such 
a path, with different developments and deepenings, according to class contexts and 
circumstances. We think that the whole experience gives evidence to the goodness of 
the suggested approach, whereas no specific didactical situation or students’ work 
does it adequately. This is the reason why, – but also due to space limits of this work, 
– we don’t give detailed reports or comments on specific events.   

In our opinion two problems would deserve further deepening. The first one 
concerns proofs by contradiction. Following the opinions of some logicians (Lolli, 
2005), we guess that many theorems in school curricula, usually proven by this 
technique, can also be proven in a direct way, slightly modifying, if necessary, their 
statements. Then the problem would turn into a linguistic one, namely to show how 
any implication can be expressed in an equivalent way by its contrapositive. We 
intend to come back to this problem in a forthcoming work. 

The second problem concerns infinity, and its two facets as potential or actual 
infinity. Obviously, on this topic all has already been said from a conceptual point of 
view. But we think that the discussion is still open on how and when and why the 
notion of infinity occurs in school in its two forms. The theorem of prime numbers is 
an important moment, but it isn’t the only one and we think that any possible 
deepening of this problem would be interesting. We will take care also of this 
question in the next future. 
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