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We report on the types of explanations that students gave for their answers to a non-
standard geometry item. We suggest that these response-types form a partially 
ordered hierarchy on the basis of mathematical quality of explanation. Students were 
given the item in Year 8 and again one year later, and a comparison of the frequency 
of response-types in Years 8 and 9 suggest that many students evaluated the 
mathematical quality of the responses in an alternative way. 
Introduction 

The analysis presented here forms part of The Longitudinal Proof Project (Hoyles 
and Küchemann: http://www.ioe.ac.uk/proof; Hoyles and Küchemann, 2000), which 
is analysing students’ learning trajectories in mathematical reasoning over time. Data 
are collected through annual surveying of high-attaining students from randomly 
selected schools within nine geographically diverse English regions. Initially 3000 
Year 8 students (age 13) from 63 schools were tested in June 2000. The same 
students were tested again in June 2001 using a new test that included some questions 
from the previous test together with some new or slightly modified questions. 
Altogether 1984 students from 59 schools took both the Year 8 and the Year 9 test. 
The same students have again been tested in June 2002 with the similar aims of 
testing understandings and development. Each test comprised items in 
number/algebra and in geometry, some in open format and some multiple choice. The 
first step in the process of devising the items was to review the research literature in 
order to identify the major issues students are likely to face when learning to prove in 
each domain. Subsequent steps involved discussion with teachers and piloting in six 
schools. Following analysis item by item each year and longitudinally, the final stage 
of the research will be to draw together these analyses to suggest more general trends 
in development in a domain. 

In geometry, we devised items for each annual test that set out to distinguish if 
students reasoned from a basis of perception or from geometrical properties, to find 
out if they were able to perform a series of angle calculations and to give reasons for 
each step, and to assess whether they could decide what was or was not an adequate 
proof of a simple conjecture. In this paper we focus on responses to one geometry 
item, G2b, in which students were asked to determine the area of an overlapping 
region and then to explain their answer. The item was part of each of the three annual 
tests so we are able to trace any changes in explanations over time. We report here on 
the Year 8 and 9 responses.  

Anderson et al (1997), in a study of naturally occurring arguments in 4th grade 
classrooms, found that the students' utterances were often vague and with no explicit 
conclusion, and that they were usually missing, or seemingly missing, explicit 



  

warrants to authorise conclusions. They suggest that this is because students take the 
shared knowledge of the participants as given and not needing to be spelt out, and 
they go on to suggest that the underlying arguments are usually perfectly sound. Reid 
(1999), on the basis of observing grade 10 mathematics classes, suggests there are 
several modes of explaining, including non-explanations (where, for example, 
students refer to their own or the teacher's authority), explaining how, explaining 
why, explaining to someone else (spontaneously, or in response to a question) and 
explaining to oneself (in an attempt to come to a personal understanding). 

Completing a written test, for researchers that the students do not know, is clearly 
different from the classroom activities considered by Anderson et al and by Reid. 
Nonetheless, it is possible that some of the factors that they identified are operating 
with the written test. In particular, students might assume, through the habits of 
everyday discourse or from a lack of familiarity with the conventions of 
mathematical argument, that some of the knowledge that they share with the 
researchers (whom they don't know, but who presumably know 'everything') does not 
need to be made explicit. In this regard, a particularly interesting feature of many 
students' responses to item G2b is that their explanations were vague, often just 
repeating the information that was given. This may in part also be due to a lack of 
familiarity with the thorny issue of how far 'back' one needs to go to justify a 
mathematical explanation and with the need to use 'transformational reasoning' (see 
for example Simon, 1996) to transmute the givens in the question into something 
more explicit. However, as we hope to show, some students also seem positively to 
value certain characteristics of such answers despite the obvious shortcomings when 
judged by standard mathematical criteria. 

Students' responses to G2b 

Item G2b was developed from a question used by Frant and Rabello (2000), and our 
Year 9 version is shown in Figure 1 (the Year 8 version was almost identical except 
for a slight difference in wording due to a difference in part a) of question G2).  

We were attracted to the question for a number of reasons. First, it is non-standard 
and therefore, rather than simply calling-up a known procedure to solve it, students 
would be more likely to consider the structure of the situation in some way. At the 
same time, it does not require a great deal of formal geometric knowledge, so that our 
students are unlikely to fail to find the required area through a simple lack of 
knowledge. Further, it is amenable to a dynamic approach (involving rotation) and 
we were curious to know how readily students would work in this way. 

We were interested primarily in the nature of students' explanations for their answer, 
rather than the answer per se. Nonetheless, we were surprised by the high proportion 
of students giving the correct answer of 1/4 for the overlap: 86 % and 93 % of the 
total sample (N = 1984) in Years 8 and 9 respectively. However, when it came to 
students' explanations the situation was perhaps less impressive, - as well as being 
more complex, as we shall see. 



  

One corner of D is at the
centre of C.

What fraction of C is
overlapped by D ?

.........

Explain your answer .  

 

Squares C and D are identical.

 
Fig 1: Item G2b (Y9 version) 

We correctly anticipated that some students would argue merely on the basis of 
perception ('It looks like a quarter', or indeed, 'It's about one third'), and that some 
might attempt to measure (for example by drawing a grid and counting squares). We 
also correctly anticipated that some students would use a more 'structural' approach, 
by for example arguing that the square C can be partitioned into four parts identical to 
the overlap, or by rotating D until it has the same orientation as C so that the overlap 
becomes a quarter-square. Such 'structural' explanations were common, which is 
perhaps not surprising for our sample. What did surprise us, though, were the less 
common but still numerous explanations which, though not incorrect, seemed to 
consist of little or nothing more that a rehearsal of the givens (typically, 'It's a quarter 
because the corner is at the centre and is a right angle'). After examining numerous 
students' scripts we came up with the coding scheme for students' explanations shown 
in Table 1, below, in which the latter kind of explanation was given a code 20. 

Regarding the mathematical quality of students' responses, we would argue that the 
codes in the above scheme are more or less hierarchical. Thus for example, a code 20 
response is generally better than a code 1 response (as it is concerned with 
mathematical properties, even though it might not be saying anything 'new'), but a 
code 20 response is less informative or 'revealing' than a code 3 response. Similarly, a 
code 40 response is better than a code 31 response, as it goes a step 'deeper' by 
explaining why the area of the overlap is conserved under a rotation. (Conservation 
of area is not relevant for code 32, and it might be better to think of this code as being 
on a different branch of the hierarchy than codes 31 and 40 - thus giving a partially 
ordered set with code 1 < code 20, code 20 < code 31 < code 40, code 20 < code 32.) 



  

32     Correct v alue; structural explanation involving par titioning or full turn

code
11

Spe cific estimate, close but wrong
Answer = 1/3 or 1/5 (or dec imal equivalent) + any or no e xplanation.

12

13

Correct v alue but no structural explanation
Answer = 1

4  +  no explanation, or perception ("it looks  like a quarter"), or spur ious reason ("the
ove rla pping side s are ha lved and half tim es  half is a quarter").
Answer = 1

4  +  actual, valid measuring (e g draws grid and counts , or mea sures right angled
triangles and calcula tes).

20
Correct v alue but only implicit reasons
Answer = 1

4  +  sensible but only partial explanation (if obviously not  sensible, then code 12).

Could involve just one prope rty ("corner is 90Þ") but might involve several properties, and/or
valid operations ("90Þ is a quarter of 360Þ"; "You can divide the square into 4"); might include
some re ference to tur ning (but not as for code 31 or 32).

31
Correct v alue; structural explanation involving rotation to salient position
Answer = 1

4  +  refers  to turning square D so that it is oriented as in one of

the se diagram s or draws  one  of the  dia gra ms (eg turn it 'to the  s ide' or 'to
the  bottom ' or  'till it is parallel').

  

Answer = 1
4  +  claims  that "the overlap fits 4 times", by r eferring to turning square

D through suc cessive 90Þ turns, or to partitioning the  square into 4 equal parts, as
in the diagram; or draws diagram .

40
Correct v alue: e xplanation of 1/4 in general c ase us ing c ompensation
Answer = 1

4  +  use s 'c om pe nsation' argum ent to explain why rotating from simple

case (code 31) conserves the area of overlap ( "on one side it is covering slightly
more of the  square  and on the other the same amount le ss").     

91      No response
92      Informative no response
93      Misce llaneous  wrong response  (but not 1/3, 1/4, 1/5)

 
Table 1: Coding scheme for answers and explanations in G2b 

Table 2a shows the frequency distribution of the codes for the students' responses in 
Year 8. Table 2b shows the same information in a more condensed form. As 
mentioned earlier, the vast 
majority of students (86 % 
in Year 8) could find the 
correct value for the size 
of the overlap. However, 
as can be seen from 
Tables 2a and 2b, only 
about half of the students 
who gave a correct value 
(and about 43 % of the 
total sample) supported 
this with an explicit 
structural reason (codes 
31, 32 and 40), whilst a 
substantial minority (28 % 
of the total sample) gave 
code 20 responses. 

Code Code description Number Percent 
code 11 Close but wrong estimate 90 5 
code 12 Correct value; no structural explanation 297 15 
code 13 Correct value; valid measurement 15 1 
code 20 Correct value; only implicit reasons 548 28 
code 31 Correct value; rotation to salient position 519 26 
code 32 Correct value; partition or repeated rotation 236 12 
code 40 Correct value; compensation 94 5 
code 9 No correct value; miscellaneous  185 9 

Table 2a: G2b Year 8 code frequencies (N = 1984) 
 

Code Code description Number Percent 
code 11 Close but wrong estimate 90 5 
c12, c13 Correct value; no structural explanation 312 16 
code 20 Correct value; only implicit reasons 548 28 
code 3 Correct value; structural explanation 755 38 
code 40 Correct value; compensation 94 5 
code 9 No correct value; miscellaneous  185 9 

Table 2b: G2b Year 8 code frequencies (N = 1984) 

 



  

Table 3 compares the Year 8 frequencies with those of 
Year 9. We found these frequencies quite puzzling at 
first. In general, students made quite clear and substantial 
progress from Year 8 to Year 9 on most of the items on 
the proof test. However, progress on item G2b seems to 
be quite modest: as can be seen, there are slightly fewer 
'perceptual' (code 1) or miscellaneous incorrect (code 9) 
responses in Year 9. However, the clearest sign of 
'progress', if that is what it can be called, is the increase 
in code 20 responses, from 28 % to 35 %.  

Not only are these 'gains' small, there is a 
high degree of inconsistency in students' 
responses, as can be seen from the adjacent 
two-way table (Table 4). Thus, for example, 
only 14 of the 94 students who gave a code 
40 response in Year 8 gave a code 40 
response in Year 9. 

If one ignores any code 9 responses, but 
assumes that the other codes are ordered 
hierarchically, then, from Table 4, the 
numbers of students who progress, regress and give the same code response are 519 
(26 %), 485 (24 %) and 723 (36 %) respectively. The net progress is then just 2 % ! 

This seeming dramatic lack of progress on item G2b has made us question whether 
the mathematical hierarchy that we have assigned to the codes, chimes with the way 
the students see these different kinds of responses, in particular with respect to codes 
20 and 3.  

As part of our case studies of certain schools in our sample, we have interviewed 
individual students about their Year 8 and 9 (and sometimes also Year 10) written 
responses to G2b. In these interviews, we looked particularly at two response patterns 
(both of which are quite common, as can be determined from Table 4): 
Pattern A, where students gave a code 20 response in one or more years and did not 
give any code 3 (or 4) responses; 
Pattern B, where students switched from a code 20 response to a code 3 (or 4) 
response, or vice versa. 
In the case of Pattern A, we were interested in whether we could get the students to 
elaborate on their code 20 responses, ie to explain why the givens (a 90° corner at the 
centre of the square) mean that the area of overlap is a quarter. In other words, could 
they shift to a code 3 or 4 response? Some students seemed unable to do this, which 
fits our view that the codes are mathematically hierarchical. On the other hand, others 
seemed able to move to a code 3 (or 4) response quite easily. In such cases, our 
interested shifted to finding out which kind of response they preferred. This was also 
our interest for Pattern B. However, when we tried to probe students' views on this, 

Code Y8 % Y9 % 
code 11 5 2 
c12, c13 16 15 
code 20 28 35 
code 3 38 39 
code 40 5 5 
code 9 9 5 

Table 3: G2b Y8 and 9 code freqs 
(N = 1984) 

G2b    Y9     
 Code c11 12,13 c20 c3 c40 c9 Total 

 c11 6 19 20 33 2 10 90 
 12,13 6 65 103 106 15 17 312 
Y8 c20 5 70 270 167 18 18 548 
 c3 8 88 230 368 36 25 755 
 c40  13 22 43 14 2 94 
 c9 5 43 45 56 9 27 185 

 Total 30 298 690 773 94 99 1984 

Table 4: G2b Y8 by Y9 code frequencies (N = 1984) 



  

their responses were often not very revealing. In part this can be explained by the fact 
that our students were not very experienced in providing explanations (as opposed to 
answers) - at least in geometry - and thus had no clear models to go by, in general, 
and in our particular test/interview situation. Nonetheless, having produced both 
kinds of response, we were surprised that the students often had difficulty describing 
their characteristics. We were even more surprised that, with both kinds of response 
in front of them, students did not always, and immediately, express a clear preference 
for code 3 over code 20 responses. 

From a mathematical point of view, a typical code 20 response is unsatisfactory, 
because it does not reveal anything: it simply reiterates the givens and as such is 
essentially circular, as it is a condensed version of 'If the corner is a right angle and is 
at the centre, then it's a quarter because the corner is a right angle and is at the centre'. 
This shortcoming may seem glaringly obvious to an experienced mathematician. On 
the other hand, it could be argued that this is just an example (albeit an extreme one!) 
of the difficult and ever present issue of how far one need go in unpacking 
mathematical properties in order to prove a statement. (Thus for example, in the 
compensation argument described under code 4 in Table 1, is it enough to state that 
the two triangular regions in the diagram are the same, or does one need to justify 
this?). The deductive steps in a mathematical argument are tautological (Toulmin, 
1958); as such, though they may reveal what is hidden, essentially they say nothing 
new. No wonder students have difficulty deciding what depth of explanation is 
required, even if they can apply the necessary transformational reasoning (Simon, 
1996). In the light of these difficulties, it is  quite possible that, for some of our 
students, code 20 responses are seen as appealing because they seem general and 
concerned with mathematical properties. Moreover, a basic code 31 response, say, 
can seem quite specific (in that it is concerned with the overlap when the squares are 
in a particular orientation); also, it might appear as more of a demonstration ('Look, 
here it is clearly a quarter') than a proper, structural, explanation. 

The argument here is that some students, at least, are content to give a code 20 
response rather than a code 3 or 4 response, not because they are mathematically 
unable to give a 'higher level' 
response, but because they value the 
characteristics of code 20 responses 
described above. To probe this 
further, we compared students' 
responses to item G2b with their total 
score2 on the national Key Stage 3 
mathematics tests that English school 
students are required, by statute, to 
take towards the end of Year 9. Table 
5, right, shows the average KS3 score 
for those groups of students giving 
particular response-codes in Years 8 and 9. (Students for whom we do not have an 

 Year 8 Year 9 
Code No. of 

students 
Average 

KS3 score 
No. of 

students 
Average 

KS3 score 
code 11 84 66.3 27 69.8 
c12, c13 296 74.8 286 76.3 
code 20 539 83.0 670 81.9 
code 3 718 82.7 737 80.5 
code 40 91 84.5 87 82.7 
code 9 173 69.9 94 68.7 
Total 1901 79.7 1901 79.7 

Table 5: G2b Y8 and Y9 average KS3 scores for different  
codes (N = 1901) 



  

appropriate KS3 score have been omitted, which has reduced the sample slightly, 
from 1984 to 1901.)As can be seen from the table, the pattern of average KS3 scores 
is quite similar for Years 8 and 9. In particular, students who gave code 11 and code 9 
responses have average KS3 scores well below the sample average, while students 
who gave code 20, code 3 and code 4 responses have very similar (and above 
average) average KS3 scores -indeed, the code 20 average is above the code 3 
average for both years (albeit only slightly). Thus the data support the conjecture that 
students giving code 20 responses are not necessarily mathematical less able (as 
measured by the KS3 test score) than those giving code 3 responses. 

A feature of our coding scheme not mentioned so far is that we also noted whether, in 
their explanations, students explicitly stated that the overlapping area would always 
be a quarter. We did this by adding the letter A (for Always) to the code. The code 
20A and 31A frequencies turned out to be quite high, especially in Year 9, and it is 
therefore interesting to look at the average KS3 scores for these codes, which are 
shown (just for Year 9) in Table 6, below. 

As can be seen, the A codes have (markedly) higher 
average KS3 scores than the corresponding non-A 
codes, which fits the notion that higher attaining 
students are more concerned with generality. Also, for 
the non-A codes the average KS3 scores for the code 
20 responses are still similar to (and slightly higher 
than) those for the code 31 responses, though, 
interestingly, this is not the case for the A codes.  

Conclusion 

The students in our sample, though relatively high attaining, are unlikely to have had 
much experience of providing mathematical explanations in geometry, especially in 
written form. This lack of experience can manifest itself in various ways, depending 
on the item. For example, in a question involving a three step calculation to find the 
size of an angle (Küchemann and Hoyles, 2002), most of our students could evaluate 
the angle successfully, but when asked to explain each step, rather than give a 
mathematical justification (such as 'The angle sum of a triangle is 180°'), many 
students gave procedural explanations (such  as 'I took 40° from 180° to find the 
remaining angles'). In the case of item G2b, it is perhaps not surprising that students' 
explanations were often less explicit than would conventionally be deemed desirable 
and that progress was therefore not very evident. However, we were surprised by the 
substantial number of students whose explanation were not only vague but essentially 
circular, and in particular by the finding that the frequency of such explanations 
increased rather than decreased from Year 8 to Year 9. Further consideration of the 
data lead us to conclude that some students may have chosen to give such 
explanations, not because they did not have access to more structural explanations, 
but because they valued certain characteristics of these explanations, namely their 
generality and reference to mathematical properties. 

 Year 9 
Code No of 

students 
Average 

KS3 score 
code 20 446 80.2 
code 20A 224 85.4 
code 31 497 79.3 
code 31A 92 94.2 

Table 6: G2b Year 9 average KS3  
scores for some 'Always' codes 



  

It is interesting to consider how one might help students to see the need to go beyond 
the givens when constructing a mathematical argument, especially as the stopping 
point in this process is essentially arbitrary. One heuristic which might help to bring 
out the 'consequences' of the givens is to consider how one can transform a given 
problem in such a way that the result still holds (for example, in the case of G2b, by 
increasing the size of square D) or so that it no longer holds (for example, by 
changing C and D into rectangles). More generally, results from the analysis of our 
geometry items suggest that making progress in geometrical reasoning can be 
problematic as students have to learn the social norms expected of deductive 
explanations, while retaining their intuitive sense of manipulating shape and space. It 
is also clear that not only must we clarify effective heuristics, but we must find ways 
that they be taught and revisited over time to sustain progress. 
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Notes  

1 Strangely, a very similar task has since found its way into the government guidelines for teaching lower secondary 
school mathematics (DfEE, 2001). 
2 Most students in our sample took either the Level 5-7 KS3 tests or the Level 6-8 KS3 tests. We used a conversion 
table kindly provided by the QCA to convert students' total score on the 5-7 tests to an equivalent total score on the 6-8 
tests. A small minority of students took the Level 4-6 tests, for which we did not have a conversion table and so these 
students were omitted from the KS3 score analysis. 
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